在现代数字化时代,服务器的性能和能力变得越来越关键。随着数据处理和存储需求的不断增长,内存(RAM)在服务器性能中扮演着至关重要的角色。在过去的几十年里,内存技术经历了多次革命性的变革,其中包括DDR3、DDR4和DDR5等内存标准的推出。本文将深入探讨这三种内存标准,比较它们在性能、能效、适用场景等方面的差异,帮助您了解如何选择适合您服务器需求的内存。
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
松哥原创的 Spring Boot 视频教程已经杀青,感兴趣的小伙伴戳这里-->Spring Boot+Vue+微人事视频教程
早期内存通过存储器总线和北桥相连,北桥通过前端总线与CPU通信。从Intel Nehalem起,北桥被集成到CPU内部,内存直接通过存储器总线和CPU相连。
近日,中科龙芯公司在河南鹤壁举行的信息技术自主创新高峰论坛上发布了最新的3D5000高性能服务器CPU,这款CPU的发布引起了广泛关注。
4月8日上午,在鹤壁举行的信息技术自主创新高峰论坛上,龙芯中科正式发布了龙芯3D5000处理器,这是龙芯5000家族的最新成员,首次使用芯粒(chiplet)技术将2个龙芯3C5000封装在一起,做到了32核。
不少同学开始问我其它型号的 CPU 和它比有什么区别呢。考虑到了市场上各种新老 CPU 型号太多了,咱们没办法一一介绍。所以我想了一个办法,咱们把这些年 CPU 进化的几个关键点讲一讲。这样将来大家再看其它的 CPU 的时候,也能做到懂得历史,也能展望未来了。最重要的微内核 sunny cove的 介绍在文章的最后。
经常有人会说支持DDR2的主板存在偷工减料的现象。事实上这是由于DDR2内存中使用了一项新的ODT技术,它可以在提高内存信号稳定性的基础上 节省不少电器元件。主板终结是一种最为常见的终结主板内干扰信号的方法。在每一条信号传输路径的末端,都会安置一个终结电阻,它具备一定的阻值可以吸收反 射回来的电子。但是目前DDR2内存的工作频率太高了,这种主板终结的方法并不能有效的阻止干扰信号。若硬要采用主板终结的方法得到纯净的DDR2时钟信 号会花费巨额的制造成本。
小霸王学习机能够使用性能非常低下的硬件,运行精彩刺激的游戏,并展示多变的画面,这依赖于程序员充分考虑到硬件的软件设计,也就是最初的软硬件融合设计思维。
选自MIT News 作者:Larry Hardesty 机器之心编译 参与:路雪、刘晓坤 近日,MIT 研究人员开发了一种专用芯片,可以提高神经网络计算的速度,比之前的芯片速度提升三到七倍,同时将能耗降低 93% - 96%。这使得在智能手机本地运行神经网络,甚至在家用电器上嵌入神经网络变成可能。相关论文已投中 ISSCC。 人工智能系统近期的进展,如语音或人脸识别都受到神经网络的支持,简单信息处理器深度互联,通过分析大量训练数据来学习执行任务。 但是神经网络规模很大,计算能耗高,因此它们不适合用于手持
在过去的二十多年里,复杂芯片的设计经历了一系列的变革。在20世纪80年代出现了基于语言的电路设计与综合。在20世纪90年代,设计复用和IP成为主流设计实践。在过去的几年里,低功耗设计已经开始再次改变设计人员处理复杂SoC设计的方式。
通常来说,作为一个Linux的SA,很有必要掌握一个专门的系统监控工具,以便能随时了解系统资源的占用情况。下面就介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具,以web的可视化方式展示系统及应用程序的实时运行状态(包括cpu、内存、硬盘输入/输出、网络等linux性能的数据)。Netdata的web前端响应很快,而且不需要Flash插件。 UI很整洁,保持着 Netdata 应有的特性。第一眼看上去,你能够看到很多图表,幸运的是绝大多数常用的图表数据(像 CPU,R
本文翻译自EEtimes, 点击文章左下『阅读原文』可以跳转到原文,限于时间跟脑容量,分两次翻译,今天翻第一部分,主要讲AMD 应用Chiplets 架构的受益。引用某大神在朋友圈发的一句话:『以前以为Chiplet 只是有钱人的乐高,本质上和搭积木并没啥差别,但这次ISSCC 让我们看到Chiplet 直接给体系架构和Analog 开出了一片未开垦的处女地!』
摘要:本文将全面探讨GPU硬件技术,从硬件架构到性能评估,深入揭示显卡、显存、算力和功耗管理等关键要点。了解GPU硬件技术对于优化应用性能、加速计算任务以及推动科学研究具有重要意义。
其板子上主控芯片(MCU)和其他芯片之间,通信属于用的是串口UART、SPI、IIC等协议,如:因为MCU内存不够扩展一个外部Flash可以用SPI协议或者IIC协议。主控芯片和WIFI模块通信可以用串口UART。(你可以理解为硬件协议,PCB板子上用的)
2. 你已经对树莓派已有了相当的了解,并已 SD卡上烧制了 Raspbian/Wheezy系统
距IT设备240V高压直流供电标准的诞生已过三年。现如今,某些电信运营商和一些大型互联网公司,已经有数目可观的IT设备、IDC机房、核心网络和业务平台采用270V(标称值240V,默认值270V)高压直流供电。高压直流供电都有哪些好处呢? 节能!依据电信运营商的运行数据结果统计,用高压直流替代传统的交流UPS供电,在UPS整个生命周期内平均节能大于20%;从新建系统统计数据分析,高压直流系统替代传统的交流UPS系统,平均节约投资大于40%。可靠!由于高压直流系统结构比UPS系统简单,而且采用了电池直挂输出母
随着嵌入式技术的不断发展,嵌入式芯片的内存也越来越大。从最开始的51单片机,然后是STM32,现在逐渐的跑操作系统,例如Linux等等。这就需要嵌入式工程师掌握RAM相关的知识,如何利用好RAM是一个很大的难题,同时也是嵌入式必备的知识储备。下面就总结一下ram相关的概念。
内存相信很多朋友都不会陌生,一般电脑内存越大越好。内存作为电脑必不可少的硬件之一,在装机或者给电脑升级的时候,也需要选择适合自己的内存。那么如何选择电脑内存?今天我们简单来聊聊内存小知识以及选购、使用常见问题等相关知识。
在上期,我们提到了,DRAM从FPM,EDO,EDO Burst,SDRAM一路进化,在SDRAM 133MHz时代,每片芯片(16bit)理论上可实现266MBps的吞吐性能。每内存通道64bit理论上最高(burst方式)可提供1066MBps吞吐性能,两个内存通道合计约2GBps。
“骑士”漏洞是我国研究团队发现的首个处理器硬件漏洞,该漏洞是因为现代主流处理器微体系架构设计时采用的动态电源管理模块DVFS存在安全隐患造成的。 DVFS模块的设计初衷是降低处理器的功耗,允许多核处理器根据负载信息采用相应的频率和电压运行。一般说来,高运行频率配备高电压,反之采用低电压。但是,当某一个核出现电压和频率不太匹配的情形,如电压偏低无法满足较高频率运行需求时,系统就会出现短暂“故障”,就像是电压不稳灯泡闪烁一样,有时虽然不会影响系统整体运行,但如果该故障发生在安全等级较高的操作过程中,如加解密程序,会因为故障对系统行为结果的干扰会泄露出重要的系统行为信息,影响系统安全。“骑士”攻击正是利用这一漏洞,采用电压故障精准注入的方式,迫使处理器可信执行区(TEE,如ARM TrustZone、Intel SGX等)内的高安全等级程序运行出现故障,从而逐渐暴露其隐含的秘钥信息或者绕过正常的签名验证功能。 针对“骑士”漏洞的攻击完全是在DVFS允许的电压范围内进行,且攻击过程可以完全使用软件在线、远程实现,不需要额外的硬件单元或者线下辅助。“骑士”漏洞广泛存在于目前主流处理器芯片中,可能严重波及当前大量使用的手机支付、人脸/指纹识别、安全云计算等高价值密度应用的安全,影响面广。 攻击者的进程运行在一个低频率的处理器核心,受害者的进程运行在一个高频率的处理器核心上,攻击者进程提供一个短时间的故障电压,控制好电压的大小,使得这个电压对攻击者进程所在处理器核心没有影响,但是能使受害者进程所在处理器核心产生硬件错误,从而影响受害者进程。 具体的利用细节是,准备一个适当的能够发生电压故障的环境,做三件事,一是将受害者程序运行的处理器核心配置成高频率,其它处理器核心配置成低频率;二是攻击者程序用一个固定、安全的电压初始化处理器;三是清楚目标设备的剩余状态,包括Cache布局、分支预测表、中断向量表和状态寄存器等。 通常情况下,能够被VoltJockey注入错误的函数在受害者程序中只占很小的一部分,我们并不能确定其具体的执行时间,因此,攻击者程序需要在受害者程序产生错误之前对其中间执行过程进行监控,等待能够用来注入错误的函数被执行。 硬件注入攻击的目标是改目标函数的一小部分指令和数据,而且,这部分被影响的代码应该尽可能小。因此,错误注入点应该能被精确控制。到能够产生错误注入之前需要的时间,称为“预延迟”。 故障电压的大小和持续时间,是使产生的硬件错误能够被控制的两个因素。找到恰当的电压和持续时间,使得数据按照预期被改变,从而影响原有的程序流程,是非常重要的。 攻击的最终目的是获取受害者程序的敏感数据,或者篡改受害者进程的函数,而不是使受害者程序所在内核崩溃,因此,需要错误注入完成后,尽快恢复处理器核心电压为修改之前的正常值,确保受害者程序继续执行。
1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。特点是非易失性,其记录速度也非常快,同时体积小,因此后来被广泛运用于数码相机,掌上电脑,MP3、手机等小型数码产品中。 Intel是世界上第一个生产闪存并将其投放市场的公司,当时为NOR闪存。 1989年日立公司于研制了NAND闪存,逐渐替代了NOR闪存。 PC上的SSD和手机的ROM,本质上是一家人,都是NAND闪存。
输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由 A/D 转换器数字化,经过 A/D 转换后,信号变成了数字形式存入存储器中,微处理器对存储器中的数字化信号波形进行相应的处理,并显示在显示屏上。这就是数字存储示波器的工作过程。
CPU的功率与主频成正比,同时也与更加精良的设计工艺有关。那么,如果我们不断改进设计工艺,同时无限制地提高主频,是不是就可以无限制地提高CPU的计算能力呢?
1、所有IO管脚,如果高阻状态端口是高电平,就设成上拉输入;如果高阻状态是低电平,设成下拉输入;如果高阻是中间状态,设成模拟输入。这个很多人都提到过,必须的。作为输出口就免了,待机你想输出个什么东西,一定要输,硬件上加上下拉就可以了
点击上方蓝字每天学习数据库 本文作者:黄稚禹,腾讯云数据库产品经理。曾任职新浪彩票数据库总监,精通金融系统的数据运维体系架构。之前为腾讯视频、腾讯新闻、企鹅号、财经自选股等业务的数据平台总负责人。 ---- 大家都知道很多关于MySQL Server相关的优化技巧,比如:MySQL参数配置优化、MySQL的SQL语句优化、MySQL的schema设计优化。但却对运行MySQL的操作系统和硬件优化有所忽略。本文从Linux操作系统和服务器硬件的角度来说下关于MySQL的优化技巧,如果在MySQL Serve
( 1)检查电源连接是否正确,电压范围应为 DC10~24V,输出能力不低于 2A, 正负极连接正确。若电池极性接反,即便未进行过开机操作也会导致设备永久性损坏。
大多数 DVFS 系统使用一组离散的电压/频率对。确定支持哪些值是一个关键的设计决策,并且高度依赖于应用程序。
用户在选择PC服务器产品时首先要结合自身的应用对服务器本身有一个全面的了解,比如服务器是用作数据库服务器、邮件服务器、还是Web服务器?等等,然后才好对症下药。
服务器CPU,就是在服务器上使用的CPU。目前,服务器CPU按CPU的指令系统来区分,通常分为CISC型CPU和RISC型CPU两类,后来又出现了一种64位的VLIM(Very Long Instruction Word超长指令集架构)指令系统的CPU,而Intel选择称呼他们的新方法为EPIC(Explicitly Parallel Instruction Computer,精确并行指令计算机)。
指内存所采用的内存类型,不同类型的内存传输类型各有差异,在传输率、工作频率、工作方式、工作电压等方面都有不同。目前市场中主要有的内存类型有 SDRAM、DDR SDRAM和RDRAM三种,其中DDR SDRAM内存占据了市场的主流,而SDRAM内存规格已不再发展,处于被淘汰的行列。RDRAM则始终未成为市场的主流,只有部分芯片组支持,而这些芯片组也逐渐退出了市场,RDRAM前景并不被看好。
2、输入功率因数 功率因数低,输入无功功率大,谐波电流污染电网,影响干扰其它设备。
在离线(“备用”)UPS 系统中,负载直接由输入电源供电,只有在市电出现故障时才会调用备用电源电路。
本篇作为有关DDR的相关知识的第一篇,先给出DDR的前生SDRAM以及演变DDR/DDR2/DDR3等的总体概念与区别,后面会细分技术细节。文章参考互联网以及国外各大网站以及文献,水平有限,若有疏漏,还请谅解。注:本文首发易百纳技术社区,FPGA逻辑设计回顾(9)DDR的前世今生以及演变过程中的技术差异[1]
最近苹果发布了几款 2019 MacBook Pro,处理器升级到了 9 代 CPU。众所周知,18 款的 MBP 在出来后就面临散热尿崩,反向睿频的尴尬局面,虽然后面苹果更新了系统版本,通过系统更新缓解了这个问题,但也没有解决 99℃ 反向睿频的问题。
当服务器被放在散热条件不好的条件下,这样会导致硬盘驱动过早损坏,并且服务器其他的组件也会很快出现故障。现代的服务器主板检测到CPU过热的时候,通常会限制CPU的频率,所以即使服务器没有完全损坏,也有可能达到一个无法使用的程度。有时候,组件过热也许会导致进程意外崩溃。
芯片厂商向客户介绍产品,从硬件角度说地最多的就是功能,性能,功耗和价格。功能这个主要就是看芯片提供了什么接口,比如闪存,内存,PCIe,USB,SATA,以太网等,还看内部有什么运算模块,比如浮点器件,解码器,加解密,图形加速器,网络加速器等等。性能,对CPU来说就是测试程序能跑多少分,比如Dhrystone,Coremark,SPEC2000/2006等等。针对不同的应用,比如手机,还会看图形处理器的跑分;又比如网络,还会看包转发率。当然,客户还会跑自己的一些典型应用程序,来得到更准确的性能评估。功耗就是在跑某个程序的时候,整个芯片的功率是多少瓦。通常,这时候处理器会跑在最高频率,但这并不意味着所有的晶体管都在工作,由于powergating和clock gating的存在,那些没有被用到的逻辑和片上内存块并没在完全耗电。我看到的芯片公司给出的处理器最大功耗,通常都是在跑Dhrystone。这个程序有个特点,它只在一级缓存之上运行,不会访问二级缓存,不会访问内存。这样得出的其实并不是真正的最大功耗。但是从实际经验看,没有应用程序能让CPU消耗更高的能量,所以这么测量最大功耗也没什么错。当然,作为整体的芯片功耗,还得包括各种加速器和接口,尤其是会被用到的模块。
电容,和电感、电阻一起,是电子学三大基本无源器件;电容的功能就是以电场能的形式储存电能量。
中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。差不多所有的CPU的运作原理可分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。
AI 科技评论按:说起 FPGA,很多人可能都不熟悉,它的英文全称为 Field Programmable Gate Array,即现场可编程门阵列,也被称为可编程集成电路。随着大数据以及 AI 的发展,越来越多的数据中心引入 FPGA 作为 CPU 的加速器以提高数据处理速度,提升服务器性能,因此降低 FPGA 的能耗也成为数据中心里新的挑战。本文介绍了其中一种降低 FPGA 能耗的方法——基于自测量的 FPGA 动态电压调节解决方案。本文根据嘉宾的直播分享整理而成。 动态电压调节(DVS)作为常见的数字
如果你是一个 EECS 专业的学生或领域内从业者,你一定经常听到别人谈论 DRAM 、内存和 DDR ——学数字电路和计算机组成的时候绕不过 DRAM ,讨论电脑性能的时候离不开内存,围观领域内公司发布新产品时,总是看到产品使用了所谓的 xx 通道 DDR4/DDR5 技术。
VK1056B/C 是 56 点、 内存映象和多功能的 LCD 驱动, VK1056B 的软件配置特性使它适用于多种 LCD 应用场合,包括 LCD 模块和显示系统,用于连接主控制器和 VK1056B 的管脚只有 4 条, VK1056B 还有一个节电命令用于降低系统功耗。 Y10-247
锂电池常规的供电电压范围是3V-4.2V之间,标称电压是3.7V。锂电池具有宽供电电压范围,需要进行降压或者升压到固定电压值,进行恒压输出,同时根据输出功率的不同,(输出功率=输出电压乘以输出电流)。不同的输出电流大小,合适很佳的芯片电路也是不同。
PW5410A 是一颗低噪声,恒频 1.2MHZ 的开关电容电压倍增器。 PW5410A 的输入电压范围2.7V-5V,输出电压 5V 固定电压,输出电流高达 250MA。外围元件仅需要三个贴片电容即可组成一个升压电路系统.
Linux 在消费电子领域的应用已经相当普遍,而对于消费电子产品而言,省电是一个重要的议题。
Linux 在消费电子领域的应用已经相当普遍,而对于消费电子产品而言,省电是一个重要的议题。 Linux 电源管理非常复杂,牵扯到系统级的待机、频率电压变换、系统空闲时的处理以及每个设备驱动对系统待机的支持和每个设备的运行时(Runtime)电源管理,可以说它和系统中的每个设备驱动都息息相关。 对于消费电子产品来说,电源管理相当重要。因此,这部分工作往往在开发周期中占据相当大的比重,下图呈现了 Linux 内核电源管理的整体架构。大体可以归纳为如下几类: 1)CPU 在运行时根据系统负载进行动态电压和频率变
经常做施工的朋友会问到强弱电怎么区别,强电指的是什么,弱电指的是什么,今天一起了解下强弱电是如何区分的?
前面文章分享了很多关于STM32F103系列知识点、物联网相关的小项目,工程都采用的是寄存器方式编写;很多小伙伴接触STM32开始都采用库函数编程,不清楚如何使用寄存器方式开发STM32;这篇文章就讲一下如何新建寄存器风格的STM32工程,并介绍需要用到哪些官方系统文件等。
“玩的次数多了自然就会了”笔者一直都对这句话深信不疑,小编我也是一个爱玩的人,从小参加各种极限运动,上学逃课去网吧,下课依然逃课去网吧!而现在上班了玩DIY,下班了玩车。
领取专属 10元无门槛券
手把手带您无忧上云