2013年是英雄联盟在线爆发式的增长的一年,年初的运营数据已经让全体英雄联盟运营团队感受到了巨大的压力。去年,扩容相关工作占到占据了英雄联盟运维较多的工作时长,这使得致力于提升用户体验的英雄联盟运维团队在年初就已经着手研究如何实现自动化扩缩容。 自动化扩缩容的目的主要有三个部分,首先是用户体验的保障,我们必须以最快的响应速度去应对用户增长的需求,否则必然会出现大规模的掉线或者拥挤排队,影响游戏基本体验;其次是资源的最有效利用,英雄联盟业务的单位运营成本,已经超过了其他同类型业务的平均线,我们需要考虑除了快速
记得当年《甄嬛传》热播,调用了我们团队的媒体资讯接口。接口被调用挂了。当时虽然我不负责那一块,只是目睹了当时大家在临场解决问题的紧张一幕。但是这件事在我心里埋下了种子,从此追求高可用、高稳定成为职业发展的方向。
hi 各位, 上两周一直都在做泰捷商城这个项目。这个项目的目的就是卖泰捷出品的WEBOX。这是我第一次做有关电子商务的网站。各种头绪。其实原始需求很简单,只卖一件商品,每星期只卖一次。 但是online to offline是从来不是一件简单的事情。因为这一次你所做的事情不仅仅是在线上,而是很多事情要发生在线下的真实世界里。这是一件非常的消耗精力的事情。但人又是生活在现实生活中。比如订单的流转。因为这一次我们不仅仅是做一个订单,而是要把订单真正的转换成工厂生产出来的货物,而且要通过物流公司真正的把货物运送到
面临的问题 首先,只有存储型的组件,我们才会使用一致性hash;计算型的服务增删节点对整个任务一般没影响,所以负载均衡直接用random就可以。那么像redis、memcache怎么实现负载均衡的呢?
比如:一个服务器节点挂了,计算公式从hash(key)% 3变成了hash(key)% 2,结果会发生变化,此时想要访问一个key,这个key公开选拔的缓存位置大概率会发生改变,那么之前缓存key的数据也会失去作用与意义。
前提:某大型跨境电商业务发展非常快,线上机器扩容也很频繁,但是对于线上机器的运行情况,特别是jvm内存的情况,一直没有一个统一的标准来给到各个应用服务的owner。
在估算之前我们必须清楚这台数据库服务器的配置是什么情况,正常情况下我们需要摸清楚以下几点因素:
具体的指标定义,如:高并发方面要求QPS 大于10万;高性能方面要求请求延迟小于 100 ms;高可用方面要高于 99.99%。
众所周知服务器的硬盘是可以扩展容量的,随着服务器的工作内容增加,本身挂载硬盘的内存或者空间不足,就需要来扩展容量来保障系统的正常运行。每种服务器系统的内存扩展方式是不太一样的,及时的扩展容量,对于服务器的效率和性能会有更大的益处。云服务器硬盘扩容后可以取消吗?
原文地址:https://note.youdao.com/share/?id=08d7c57b04dda159c53155b00cbbe5cb&type=note#/ 容器的实现 容器本质上是把系统中
分布式、微服务、Service Mesh目前都是大家耳熟能详的词语了,现在随便一个互联网公司说出来大家都是在搞微服务。
能力管理(Capacity Management)应该是ITIL里面一个非常重要的概念,有些人叫容量管理,但我还是觉得能力管理更好一些,能力直接的理解就是我们能做什么?还有多少能力冗余?让我们来看看ITIL的概念解释,指在成本和业务需求的双重约束下,通过配置合理的服务能力使组织的IT资源发挥最大效能的服务管理流程,ITIL给到的流程图如下:
分片,Redis 数据的分布方式,分片就是将数据拆分到多个 Redis 实例,这样每个实例将只是所有键的一个子集。
微信云托管 https://cloud.weixin.qq.com 是由微信团队联合腾讯云推出的后端项目全托管服务。对于微信生态应用开发采用前后端分离架构的场景,云托管可做到免运维免服务器管理,从代码管理到 CI/CD 流水线部署发布,提供全链路、低成本、企业级的云原生解决方案。
Redis作为一款性能优异的内存数据库,支撑着亿级数据量的社交平台,也成为很多互联网公司的标配。这里将以Redis Cluster 集群为核心,基于最新的Redis5版本,从原理到实战,玩儿转Redis集群。
redis旧版小hash使用的数据结构,紧密数组存储结构 用1字节存储总节点数(如果1字节满了,代表需要遍历到底才知道有多少节点) 每个节点存储自己占用的内存空间,修改删除后,标记为闲置空间,闲置空间不压缩不回收,留用节点扩展或者插入节点 这也代表插入没有足够闲置时要O(n)移动后续内存 数据也是占用zipmap内存,所以查找是O(n)(利用len做快表跳跃)
互联网高速发展的今天,对应用系统的抗压能力要求越来越高,传统的应用层+数据库已经不能满足当前的需要。所以一大批内存式数据库和Nosql数据库应运而生,其中redis,memcache,mongodb,hbase等被广泛的使用来提高系统的吞吐性,所以如何正确使用cache是作为开发的一项基技能。本文主要介绍Redis Sentinel 及 Redis Cluster的区别及用法,Redis的基本操作可以自行去参看其官方文档 。 其他几种cache有兴趣的可自行找资料去学习。
对于提供接口服务的应用来说,很多都是用 SpringBoot 默认的 Servlet 容器 Tomcat。在一开始上线的时候,由于大多数流量较小,我们也并不会为 Tomcat 做专门的参数调整。但随着流量越来越大,应用的各项性能指标越来越差,此时我们大多数都会选择扩容。
背景 众所周知,Redis是一款性能强悍的中间件。那么它的性能到底多强,大家也是只拿到的是官方给到的数据,那么真实情况是否真的是这样? 带着这个疑问,挑选了Redis单机与集群做压测,得到性能数据,并
3、可实现全栈级监控(从底层硬件、网络、存储,到虚拟化层、操作系统、中间件,以及最上层的应用和API)
分布式缓存作为性能加速器,在系统优化中承担着非常重要的角色。相比本地缓存,虽然增加了一次网络传输,大约占用不到 1 毫秒外,但是却有集中化管理的优势,并支持非常大的存储容量。
但凡IT江湖侠士,算法与数据结构为必修之课。早有前辈已经明确指出:程序=算法+数据结构 。要想在之后的江湖历练中通关,数据结构必不可少。数据结构与算法相辅相成,亦是阴阳互补之法。
作者 | 微博研发中心基础架构部 孙云晨 编辑 | 蔡芳芳 近些年,各家公司都在不断推出各种新的 App,百万 DAU 成为各种 App 的最基本目标。本文将详解如何通过大规格服务器 +K8s 的方案简化这些新项目的成本评估、服务部署等管理工作,并在流量增长时进行快速扩容。同时,本文还介绍了微博核心业务采用此方案部署时遇到的问题以及对应的解决方案。 问题与挑战 以一个常见的社交 App 后端服务为例,如果采用主流微服务架构进行设计,通常会包含用户、关系、内容、提醒、消息等多个模块;每个模块又会分别包含各自
近些年,各家公司都在不断推出各种新的 App,百万 DAU 成为各种 App 的最基本目标。本文将详解如何通过大规格服务器 +K8s 的方案简化这些新项目的成本评估、服务部署等管理工作,并在流量增长时进行快速扩容。同时,本文还介绍了微博核心业务采用此方案部署时遇到的问题以及对应的解决方案。
你忘了去年分布式缓存服务器也扩容过一次,很多请求都穿透了,DB差点扛不住呀,这次再扩容DB估计就得挂了
Redis 是一种开源(BSD 许可)、数据结构存储在内存中的系统,用作数据库、缓存和消息队列。Redis 提供了诸如字符串、散列、列表、集合、带范围查询的排序集合、位图、超级日志、地理空间索引和流等数据结构。Redis 内置复制、Lua 脚本、LRU 驱逐、事务和不同级别的磁盘持久化,并通过 Redis Sentinel 和 Redis Cluster 自动分区提供高可用性。
1、Redis 可以用几十G内存来做缓存,Map不行,一般 JVM 也就分几个 G 数据就够大了
jokey,腾讯云容器产品工程师,热衷于云原生领域。目前主要负责腾讯云TKE 的售中、售后的技术支持,根据客户需求输出合理技术方案与最佳实践。 概述 Kubernetes Pod 水平自动扩缩(Horizontal Pod Autoscaler,以下简称 HPA)可以基于 CPU 利用率、内存利用率和其他自定义的度量指标自动扩缩 Pod 的副本数量,以使得工作负载服务的整体度量水平与用户所设定的目标值匹配。本文将介绍和使用腾讯云容器服务 TKE 的 HPA 功能实现 Pod 自动水平扩缩容。 使用场景 H
当现有磁盘空间不足时,首先需要考虑的是增加磁盘容量。通常的做法是为服务器添加新的硬盘或使用已有的硬盘但未分配的空间。
网友说自己的小型网站部署服务器上,随着网站数据增多、访问量变大后,用什么办法解决大流量访问,扩容增配置还是动静分离呢?这个问题对于很多站长来说是一个挺纠结的问题。业务在高速增长中,传统的方法是扩容增配,CPU/内存/带宽等等都是扩容的对象。那么现在随着云服务器的普及率越来越高,也可以利用动静分离的办法来解决这个问题。本文中魏艾斯博客说一下整体思路,有了思路再去操作就容易很多了。
Sentinel为Redis提供高可用。利用Sentinel,在无人干预的情况下,可用让Redis服务抵御一定程度的故障。主要发挥以下几个方面的作用:
我们在学习 Redis 的 Hash 表的时候难免脑子里会想起其他 Hash 表的实现,然后进行一番对比。通常我们如果要设计一个 Hash 表,那么我们需要考虑这几个问题:
大家好,我是本公众号的主持人,美团技术团队的程序员鼓励师美美。本文根据美团基础架构部/容器研发中心技术总监欧阳坚在2018 QCon(全球软件开发大会)上的演讲内容整理而成,讲述了美团容器平台架构设计,还有容器技术的实践。
这两天看到技术群里,有小伙伴在讨论一致性hash算法的问题,正愁没啥写的题目就来了,那就简单介绍下它的原理。下边我们以分布式缓存中经典场景举例,面试中也是经常提及的一些话题,看看什么是一致性hash算法以及它有那些过人之处。
分布式数据库首先要解决把整个数据集按照分区规则映射到多个节点的问题,即把数据集划分到多个节点上,每个节点负责整体数据的一个子集。
Session对象存储特定用户会话所需的属性及配置信息。这样,当用户在应用程序的Web页之间跳转时,存储在Session对象中的变量将不会丢失,而是在整个用户会话中一直存在下去。当用户请求来自应用程序的 Web页时,如果该用户还没有会话,则Web服务器将自动创建一个 Session对象。
随着云计算技术的不断发展,越来越多的企业开始选择将自己的数据库部署在云上,以更好了的支持企业数字化转型以及业务创新,在这个过程中,很多客户会遇到这样一个问题,业务会存在高峰期和低谷期,同样数据库的访问量也是会存在相应的高峰期和低谷期。
生日悖论: 是指在不少于 23 个人中至少有两人生日相同的概率大于 50%。例如在一个 30 人的小学班级中,存在两人生日相同的概率为 70%。对于 60 人的大班,这种概率要大于 99%。从引起逻辑矛盾的角度来说,生日悖论并不是一种 “悖论”。但这个数学事实十分反直觉,故称之为一个悖论。
ORACLE数据库系统是美国ORACLE公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器(CLIENT/SERVER)或B/S体系结构的数据库之一。Oracle旗下的Oracle数据库监控软件是企事业单位中最重要的监控需要,通过对Oracle数据库的监控,可以全面了解Oracle的运行状态、数据库响应情况、数据库表空用度情况,从而方便Oracle数据库性能优化。
现代电子游戏,基本上都会使用一定的网络功能。从验证正版,到多人交互等等,都需要架设一些专用的服务器,以及编写在服务器上的程序。因此,游戏服务器端软件的架构,本质上也是游戏服务器这个特定领域的软件架构。 软件架构的分析,可以通过不同的层面入手。比较经典的软件架构描述,包含了以下几种架构: 1.运行时架构——这种架构关心如何解决运行效率问题,通常以程序进程图、数据流图为表达方式。在大多数开发团队的架构设计文档中,都会包含运行时架构,说明这是一种非常重要的设计方面。这种架构也会显著的影响软件代码的开发效率和部署效率。本文主要讨论的是这种架构。 2.逻辑架构——这种架构关心软件代码之间的关系,主要目的是为了提高软件应对需求变更的便利性。人们往往会以类图、模块图来表达这种架构。这种架构设计在需要长期运营和重用性高的项目中,有至关重要的作用。因为软件的可扩展性和可重用度基本是由这个方面的设计决定的。特别是在游戏领域,需求变更的频繁程度,在多个互联网产业领域里可以说是最高的。本文会涉及一部分这种架构的内容,但不是本文的讨论重点。 3.物理架构——关心软件如何部署,以机房、服务器、网络设备为主要描述对象。 4.数据架构——关心软件涉及的数据结构的设计,对于数据分析挖掘,多系统协作有较大的意义。 5.开发架构——关心软件开发库之间的关系,以及版本管理、开发工具、编译构建的设计,主要为了提高多人协作开发,以及复杂软件库引用的开发效率。现在流行的集成构建系统就是一种开发架构的理论。
哈希表的英文叫 “Hash Table”,我们平时也叫它 “散列表” 或者 “Hash 表”。
美团的容器集群管理平台叫做HULK。漫威动画里的HULK在发怒时会变成“绿巨人”,它的这个特性和容器的“弹性伸缩”很像,所以我们给这个平台起名为HULK。貌似有一些公司的容器平台也叫这个名字,纯属巧合。
综上,面对突发流量应通过扩容,扩展,限流,负载均衡,缓存等手段来应对,确保系统稳定和可用。并且要从全局角度出发,相互协调各系统之间的关系。
我们在使用n台存储设备存储数据的时候,常规做法有将数据根据key%n这样计算放在哪台服务器,但是在扩容的时候就会遇到数据迁移的问题,比如扩容m台服务器,以前是key%n,现在是key%(n+m),导致数据存储的位置需要变化,数据迁移的成本比较大,这个时候我们就引用了一种叫一致性hash的算法 。 一致性哈希算法在1997年由麻省理工学院提出,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用。
系统的运作会需要计算器服务主机的支持,为了使用更加方便,多数都是会选择云服务器主机,但是不同的使用途径需求的配置不一样,如果是普通的网站对配置相对较低,只需要满足日常的数据上传和访问即可,但购物类的平台相对要考虑到特别是大促活动的时候大量的点击率和交易所带来的数据计算需求,会在配置要求上高一些,但如果是大数据库的话,自然配置会更高一些,那么如何选购数据库服务器呢,需要了解运行的核心数据。
首先购买一台云服务器,并在上面安装 MySQL 数据库,然后部署一个 node.js 之类的 HTTP 服务器监听 80 和 443 端口,在 node.js 中连接数据库并实现业务逻辑。最后购买一个域名并配置 DNS 记录指向我们的服务器 IP 地址,这个网站就算搭建完成了。随着不断的努力,我们网站的访问量越来越多。某天早晨当你美滋滋打开网站想要看一眼最新评论时,却发现网站打不开了。。。
领取专属 10元无门槛券
手把手带您无忧上云