一谈到Linux系统分析,大多数开发觉得不了解也没有关系,但是了解了可以帮你走的更远。从开发的角度了解CPU,MEMORY,IO,NETWORK。在日常工作中我们也会遇到一些Linux系统性能的问题,
在平时的运维工作中,当一台服务器的性能出现问题时,通常会去看当前的CPU使用情况,尤其是看下CPU的负载情况(load average)。对一般的系统来说,根据cpu数量去判断。比如有2颗cup的机器。如果平均负载始终在1.2以下,那么基本不会出现cpu不够用的情况。也就是Load平均要小于Cpu的数量。 对于cpu负载的理解,首先需要搞清楚下面几个问题: 1)系统load高不一定是性能有问题。 因为Load高也许是因为在进行cpu密集型的计算 2)系统Load高不一定是CPU能力问题或数量不够。
作者新建了QQ群:460430320,供大家交流测试心得(培训机构勿进)。另外,还会不定期上传测试资料,也欢迎您共享测试资料。
作为一个前端工程师,大家日常也会维护一些 Node.js 服务,对于一个服务我们首先要关注的就是它的稳定性,可能大部分同学对服务端的很多概念不会理解的特别深刻,所以在稳定性上面也不知道去关注什么。
本文整理了网络/游戏/编程相关的专业术语,作为游戏开发中的辅助参考资料,后期如果遇到其他的术语还会更新。
在没有监控软件的情况下,只要服务器能上互联网,就可通过发邮件的方式来提醒管理员系统负载与CPU占用的使用情况。 一、安装linux下面的一个邮件客户端msmtp软件(类似于一个foxmail的工具)
平常的工作中,在衡量服务器的性能时,经常会涉及到几个指标,load、cpu、mem、qps、rt,其中load、cpu、mem来衡量机器性能,qps、rt来衡量应用性能。
1.查看聚合报告和服务器的资源使用图,检查响应时间,事务成功率,CPU,内存和IO使用率是否达到要求,如果出错率达到了总请求的3%,我们会检查是什么原因导致的,修改好后,重新测试;
这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。建议供学习者和小规模集群使用。
能力管理(Capacity Management)应该是ITIL里面一个非常重要的概念,有些人叫容量管理,但我还是觉得能力管理更好一些,能力直接的理解就是我们能做什么?还有多少能力冗余?让我们来看看ITIL的概念解释,指在成本和业务需求的双重约束下,通过配置合理的服务能力使组织的IT资源发挥最大效能的服务管理流程,ITIL给到的流程图如下:
说明:百度的应急文章很多,在此不在介绍如何按照手册进行排查,只针对实战进行分析和排查。
但是看到网络输入和输入流量都不是很高,所以网站被别人攻击的概率不高,后来服务器负荷居高不下,只能保存dump文件进行分析,并一台一台服务器进行重新启动(还好大家周五下班了)
在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况,以便性能分析优化。而监控CPU的性能一般包括以下3点:运行队列、CPU使用率和上下文切换。
分布式、微服务、Service Mesh目前都是大家耳熟能详的词语了,现在随便一个互联网公司说出来大家都是在搞微服务。
在服务器端程序开发领域,性能问题一直是备受关注的重点。业界有大量的框架、组件、类库都是以性能为卖点而广为人知。然而,服务器端程序在性能问题上应该有何种基本思路,这个却很少被这些项目的文档提及。本文正式希望介绍服务器端解决性能问题的基本策略和经典实践,并分为几个部分来说明:
很多初学者在安装 Linux 系统时,都对自己的电脑配置存在质疑,担心其是否能够满足安装 Linux 的要求。本节就从 CPU、内存、硬盘、显卡等这些方面,详细介绍一下安装 Linux 系统的最低配置。
系统负载(System Load)是系统CPU繁忙程度的度量,即有多少进程在等待被CPU调度(进程等待队列的长度)。
随着 Internet 的快速发展和业务量的不断提高,基于网络的数据访问流量迅速增长,特别是对数据 中心、大型企业以及门户网站等的访问,其访问流量甚至达到了 10Gb/s 的级别;同时,服务器网 站借助 HTTP、FTP、SMTP 等应用程序,为访问者提供了越来越丰富的内容和信息,服务器逐渐 被数据淹没;另外,大部分网站(尤其电子商务等网站)都需要提供不间断 24 小时服务,任何服 务中断或通信中的关键数据丢失都会造成直接的商业损失。所有这些都对应用服务提出了高性能和 高可靠性的需求,这些海量的访问数据均是负载。
相比于普通的功能测试,性能测试对测试工程师的技能要求更高,一般来说,也只有中高级测试工程师才会有机会做性能测试。
Varnish与Squid都是一个反向代理服务器,都可用作高性能的代理缓存服务器,并且都是开源软件 Varnish已经得到了高度认可,普遍认为它更优于Squid,下面看下Varnish的优缺点 优点 稳定性很高,两者在完成相同负荷的工作时,Squid服务器发生故障的几率要高于Varnish,因为Squid需要经常重启 访问速度更快,Varnish采用了“Visual PageCache”技术,所有缓存数据都直接从内存读取,而Squid是从硬盘读取缓存数据,因此Varnish在访问速度方面会更快 支持更多的并
原文链接:https://www.cnblogs.com/lonelyJay/p/10076158.html
1)、系统架构:web端的服务器更新后,客户端会自动同步更新;如果是app下修改了服务端,意味着客户端用户所使用的核心版本都需要进行回归测试一遍;
SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。
集群并不是一个全新的概念,其实早在七十年代计算机厂商和研究机构就开始了对集群系统的研究和开发。由于主要用于科学工程计算,所以这些系统并不为大家所熟知。直到Linux集群的出现,集群的概念才得以广为传播。对集群的研究起源于集群系统的良好的性能可扩展性(scalability)。提高CPU主频和总线带宽是最初提供计算机性能的主要手段。但是这一手段对系统性能的提供是有限的。接着人们通过增加CPU个数和内存容量来提高性能,于是出现了向量机,对称多处理机(SMP)等。但是当CPU的个数超过某一阈值,像SMP这些多处理机系统的可扩展性就变的极差。主要瓶颈在于CPU访问内存的带宽并不能随着CPU个数的增加而有效增长。与SMP相反,集群系统的性能随着CPU个数的增加几乎是线性变化的。
三、API的生命周期:Design(设计)、Build(构建)、Test(测试)、Document(文档)、Share(发布)、run(运行)、DownLine(下线)。
由于新版的 KV 、金山、 瑞星 都加入了对网页、 插件 、邮件的随机监控,无疑增大了系统负担。处理方式:基本上没有合理的处理方式,尽量使用最少的监控服务吧,或者,升级你的硬件配备。
CPU使用率(%processor time),在80%±5%范围内波动为宜。过低,则服务器CPU利用率不高;过高,则CPU可能成为系统的处理瓶颈。
现在只要涉及到互联网的行业都离不开服务器,其中有很多企业和站长会选择服务器租用,而对于服务器租用,有一些朋友在租用时,存在一些误区,这样可能会到这租用的服务器最终是不满意的,下面赵一八笔记就来看看都有什么常见误区。
IBM Linux Technology Center (LTC) 成立于 1999 年 8 月,想让 Linux 成功的共同梦想使其与 Linux 开发团体直接合作。它的 200 多名员工使之成为开放源代码开发者的较大团队组织之一。他们提供的代码范围包括,从补丁到结构化的内核改变,从文件系统和国际化工作到 GPL'd 驱动程序。他们还致力于追踪 IBM 内部进行的 Linux 相关开发。
(接上文《Google对数据中心成本模型的分析——上》) 三、案例分析 虽然变量繁多,但通过观察不同行业的小部分数据中心案例,仍有助于我们理解这些成本因素的影响大小。首先我们看一个典型的新建于美国的,IT负载规模为几兆瓦的数据中心(大约是uptime institute Tier 3等级)。它装满了大量的机架式高端服务器产品(以某公司配置为2个CPU、48G RAM、四个硬盘的PowerEdge R520为例),其峰值功率大约为340W,某年的价格大约为7700美元,其它的一些变量参数如下: “ 1.某年美
ddos攻击是常见的网络攻击之一,ddos攻击方式多样又复杂,能防御ddos攻击,但不能彻底的根除。如果网站服务器扛不住ddos攻击,服务器将会瘫痪,访客打不开网站;严重的机房的其他机器设备也将受到影响。那么DDOS攻击的方式有哪些呢
Optane PMem 融合了内存和存储这两个不同的概念的特征,在一个物理介质上得到了体现,为革命性的突破内存和存储编程概念提供了物质基础。
服务器CPU,就是在服务器上使用的CPU。目前,服务器CPU按CPU的指令系统来区分,通常分为CISC型CPU和RISC型CPU两类,后来又出现了一种64位的VLIM(Very Long Instruction Word超长指令集架构)指令系统的CPU,而Intel选择称呼他们的新方法为EPIC(Explicitly Parallel Instruction Computer,精确并行指令计算机)。
通常,很容易将性能理解错。对于Scrapy,几乎一定会把它的性能理解错,因为这里有许多反直觉的地方。除非你对Scrapy的结构有清楚的了解,你会发现努力提升Scrapy的性能却收效甚微。这就是处理高性能、低延迟、高并发环境的复杂之处。对于优化瓶颈, Amdahl定律仍然适用,但除非找到真正的瓶颈,吞吐量并不会增加。要想学习更多,可以看Dr.Goldratt的《目标》这本书,其中用比喻讲到了更多关于瓶延迟、吞吐量的知识。本章就是来帮你确认Scrapy配置的瓶颈所在,让你避免明显的错误。
Nagios的插件 一、介绍 与其他的监控工具不同,Nagios的内在机制中不包含针对主机和服务状态的检测,而是依赖于外部程序(称为插件)来做这些脏活(--真正该做的检查工作是脏活,真够幽默的)。
系统负载:在Linux系统中表示,一段时间内正在执行进程数和CPU运行队列中就绪等待进程数,以及非常重要的休眠但不可中断的进程数的平均值(具体load值的计算方式,有兴趣可以自行深究,这里不深究)。说白了就是,系统负载与R(Linux系统之进程状态)和D(Linux系统之进程状态)状态的进程有关,这两个状态的进程越多,负载越高。
今天安装了9台Linux服务器,型号完全不一样(有DELL、HP和IBM服务器),又懒得去对清单,如何在Linux下cpu的个数和核数呢?另外,nginx的cpu工作模式也需要确切的知道linux服务器到底有多少个逻辑cpu,不过现在服务器那是相当的彪悍,直接上worker_processes 8吧。
一、CPU 良好状态指标 CPU利用率:User Time <= 70%,System Time <= 35%,User Time + System Time <= 70%。 上下文切换:与CPU利用
最近,烦心事有点多,博客也像是进入了便秘期。虽然还远远不到说放弃的地步,但总有一种挤不出牙膏的郁闷感。很怀念前几个月的冲劲和激情,一天都能存好几篇优质草稿。 看来,张戈博客是首次进入瓶颈阶段了!没办法
本文档是完成***压力测试的指导性文件。本文档给出了对测试需求、测试环境、测试过程及测试结果的总体要求, 这也是本测试项目中其他文档编写及结果评价的基础。
当执行一个场景时,Controller把场景中的每个用户配到负载生成器(Load generator)。
uptime、w、top等命令都会有系统负载load average的输出,系统平均负载被定义为在特定时间间隔内运行队列中的平均进程数,包括可运行状态和不可中断状态的平均进程数,也就是活跃进程数。它和cpu使用率没有直接的关系
线程这个概念大概在1993年后才慢慢流行起来。线程是操作系统进行调度的最小单位,拥有少量的资源,如寄存器和栈。线程的特点是共享地址空间,从而高效地共享数据。多线程的价值是更好地发挥多核处理器的功能。
Vmstat是一个很全面的性能分析工具,可以观察到系统的进程状态、内存使用、虚拟内存使用、磁盘的IO、中断、上下文切换、CPU使用等。系统性能分析工具中,使用最多的是这个,除了sysstat工具包外,这个工具能查看的系统资源最多。
Linux内核是一个令人难以置信的马戏团的表演者,可以很小心的玩弄许多进程和它们的资源需求,来保证你的服务器一直嗡嗡作响。内核也是关于公平的一切:当有资源竞争时,内核试图公平的分发这些资源。 然而,如果你有一个需要优先级的重要进程怎么办?一个低优先级的进程呢?或者,限制一组进程的资源呢? 这需要你的帮助,因为没有你的帮助,内核是无法知道哪些是CPU的关键进程。 所有进程最开始都拥有相同的优先级,Linux内核会为每个任务分配均匀的CPU调度时间。总不能让一个CPU密集型的进程只运行在低优先级吧?所以,你需要
从大方面说基本上就是两类,一类是链路出了问题,包括网络抖动,链路环中的某一节点抖动等。另一类是服务本身的问题,包括服务器自身问题如磁盘老化等,还有代码bug造成的服务等待或服务器负载问题。
领取专属 10元无门槛券
手把手带您无忧上云