最近探索出来一个在Python中创建热力图非常高效的方法,使用folium包来创建热力图,实际效果非常赞,过程简单,代码量少。...folium包基于leaflet在线地图库封装,在R语言中leaflet的接口已经非常完善,如果你对R语言中的leaflet包api接口感兴趣,可以参考这几篇文章。...leaflet地图: 动态地理信息可视化——leaflet在线地图简介 动态地理信息可视化——散点地图系列 动态地理信息可视化——leaflet构造路径图 动态地理信息可视化——leaflet填充地图...包支持多种类型的空间可视化形式,今天这一篇仅就其中的热力密度图进行分享。...首先通过一个小脚本抓取以下几个城市的经纬度 import folium import time import requests from urllib.request import quote import
热图是数据分析的基本图形之一,可以方便的表示大量数据的关联关系。 在这里我们使用seaborn绘制热图 我这里直接上代码了 因为是用jupyter notebook做的 #!...flights = flights_long.pivot("month", "year", "passengers") # In[8]: flights # In[9]: #那么很明显了,seaborn热图绘制需要的数据格式即为上图
circlize软件包从0.4.10版本开始,可以使用circos.heatmap(),画圆形热图,圆形热图不但漂亮,而且可以缩小图片占用的面积。...circos.heatmap()功能 大大简化了环状热图的创建。下面是circos.heatmap()功能的用法。 首先,我们生成一个随机矩阵并将其随机分为五个组。
热图绘制-pheatmap 概述 新买的蓝牙耳机到了,试了试感觉还不错,低音也非常出色,窗外的颜色变得丰富了起来,看着街角那家咖啡店,仿佛回到了昨天,血色染红的天空在斑斓的世界之上,我匆匆茫茫的写下“...colorRampPalette(c("navy", "white", "firebrick3"))(50)) # 是否对行进行聚类 pheatmap(test, cluster_row = FALSE) # 是否显示图例...pheatmap(test, legend = FALSE) # cells中显示数值 pheatmap(test, display_numbers = TRUE) # 数字的格式 pheatmap...Path3"), c(10, 4, 6)))) rownames(annotation_row) = paste("Gene", 1:20, sep = "") annotation_row # 显示行和颜色注释
那么我们应该怎么合理使用这些参数让你的热图看起来更加高大上呢?...GSE19804,120个样本,其中包含60个癌症样本和60个癌旁正常样本,前面我们使用t检验,并对p值进行BH校正,筛选fdr小于0.01的基因中前40个在癌症相对于正常样本中显著差异表达的基因进行热图绘制...基因名和样本名乱成一堆,也看不出来那些样本聚类到了一起… 参数调整: #颜色参数: color 表示颜色,用来画热图的颜色,可以自己定义,默认值为colorRampPalette(rev(brewer.pal...对标签的颜色进行修改 annotation_legend 是否显示标签注释条 annotation_row 数据框格式,用来定义热图所在行的注释条 annotation_names_row 逻辑值,是否显示行标签名称...annotation_col 数据框格式,用来定义热图所在列的注释条 annotation_names_col 逻辑值,是否显示列标签名称 #其他修改参数 main 设置图的标题 fontsize
via: http://blog.csdn.net/wenyusuran/article pyHeatMap是一个使用Python生成热图的库,基本代码是我一年多之前写的,最近把它从项目中抠出来做成一个独立的库并开源...目前这个库可以生成两种图片:点击图、热图。 点击图效果如下: ? 热图效果如下: ? 绘制图片时,还可以指定一个底图,这个底图可以是任意图像,也可以是另一个点击图。...关于绘制热图中用到的方法,可以参考我以前的文章,比如 关于网页点击热区图、 http://oldj.net/article/page-heat-map/ 关于热区图的色盘 http://oldj.net.../article/heat-map-colors/ 其中热图绘制中还用到了 Bresenham画圆算法 http://oldj.net/article/bresenham-algorithm/
一开始还没导入idea的时候,单纯点击一个网页是有显示出来的,当我把这个带有单选框的网页放到idea的项目中去的时候,发现单选框没显示出来。
在文章的最后将能够创建: 洛杉矶县所有星巴克酒店的基本点图 一个等值线图,根据每个星巴克中包含的星巴克数量,在洛杉矶县的邮政编码中加以遮蔽 一个热图这凸显了洛杉矶县星巴克的“热点” 你会需要: Python...从数据框中的纬度/经度对创建洛杉矶县所有星巴克的基本点图非常简单。...热图 在上面的等值线图中,看到南洛杉矶县的地区似乎总体上有更多的星巴克商店,可以找出附近有很多星巴克店的地方吗?创建一个热图来突出洛杉矶县的星巴克“热点”。...在laHeatmap.html中看到热图的图片。 似乎一切都是红色的。如果放大热图可能会更有价值。放大一点看看是否可以识别更具体的热点。 从上面的地图可以清楚地看到,在地图中有一些热点和一些非热点。...唯一遗憾的是,还没有找到一种方法将这些地图的实际交互式版本嵌入到Medium帖子中,所以只能显示截图。强烈建议通过此帖子运行一小段代码,以便自己使用交互式地图。这是一次完全不同的体验。
使用pheatmap包绘制热图 一般而言,pheatmap较heatmap.2等更为简洁以及易于理解,对于初学者而言是一款不错的热图绘制软件。...cluster_row = FALSE, cluster_col = FALSE treeheight_row=0, treeheight_col=0 # 在热图格子里展示文本 pheatmap(test...cluster_row = FALSE, cluster_col = FALSE是否聚类,#可设置参数display_numbers将数值显示在热图的格子中,可通过number_format设置数值的格式...,较常用的有".2f"(保留小数点后两位),".1e"(科学计数法显示,保留小数点后一位),number_color设置显示内容的颜色: pheatmap(test, display_numbers...#pheatmap还能够根据特定的条件将热图分隔开; # cutree_rows, cutree_cols:根据行列的聚类数将热图分隔开; pheatmap(test,cutree_rows=2,cutree_cols
R.package heatmap():用于绘制简单热图的函数 heatmap.2():绘制增强热图的函数 d3heatmap:用于绘制交互式热图的R包 ComplexHeatmap:用于绘制、注释和排列复杂热图的...R&bioconductor包(非常适用于基因组数据分析) 首先使用ggplot2画简单热图 data <- as.data.frame(matrix(rnorm(9*10),9,10)) rownames...scale_fill_gradient2('legend name', low = 'blue', high = 'red', mid = 'white') #修改图例名字以及图中颜色 大神Y叔也有画热图的
metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics 中有这么一张补充图,...这种图通常被称为时间热图或时间线图,结合了颜色块、标签和标记,我们按照以下步骤进行绘图: 数据准备:整理你的数据,确保每个时间点的数据都在正确的位置。...下面我们尝试用R复现此图 1生成示例数据 data <- data.frame( Category = c(rep("Control", 18), rep("Drought", 18)), TimePoint
每个样品都有多个基因表达量,这个时候我们比较关心的是这些基因的表达量相关性(在多个样品),基因与基因之间有两两组合相关性: M: 很容易计算基因之间的相关性矩阵 #感兴趣基因/样本的相关性图-...谁在列的位置就计算谁的相关性) #画基因之间的相关性,cor函数后面的矩阵exp[g,]要以基因为列名(转置一下) #画样本之间的相关性,cor函数后面的矩阵exp[g,]要以样本为列名(不要转置) #相关性热图...pheatmap(M) #相关性圆圈图 library(paletteer) my_color = rev(paletteer_d("RColorBrewer::RdYlBu")) my_color...# 拼图(相关性图属于另外一个拼图体系) #load("pca_plot.Rdata") pdf("cor_plot.pdf", width = 10, height = 10) plot_grid...圈的颜色 col = col, #弦的颜色 annotationTrack = c('grid', 'name', 'axis'), #绘制外周圆弧区,显示名称和刻度轴
对初学者来说, 跳过了大量细节,所以跟这个教程会比较吃力,有粉丝就提问了希望可以对这些通路在在具体的癌症里面细化展示,比如绘制gsea图,热图和火山图。...enrichmentScore > 0.5,];up_kegg$group=1 save(up_kegg,kk,file = 'up_kegg.by.gsea.Rdata') 首先批量针对每个通路绘制gsea图:..., gsub('/','-',up_kegg$Description[i]), '.pdf')) }) 然后 批量针对每个通路绘制热图,...','-',up_kegg$Description[i]), '.pdf')) }) 然后 批量针对每个通路绘制火山图,...把每个通路里面的基因列表标记在火山图里面,这个时候仍然是分成两步走,首先绘制一个火山图 (不同的包做差异分析得到的矩阵列名不一样,下面是DEseq2的结果举例哦 ): ## for volcano logFC_cutoff
热图 就是很热的图,会冒火的那种~~~ 直接上代码 library(pheatmap) library(RColorBrewer) library(ggsci) library(DESeq2) vsd.T...<- vst(dds, blind = FALSE) #选取差异基因做热图 resSig_P 1 & padj < 0.01) >...mat.1 <- assay(vsd.T.1[rownames(resSig_P), ]) >mat.1 #选取区分明显的基因做热图 topVarGenes...annotation_colors = ann_colors,color = mypal) 这句中所有的F都可以改成T,F就是关闭,T就是打开比如列聚类打开cluster_cols=T,行聚类打开cluster_rows =T显示列名...show_colnames=T,显示行名show_rownames = Trownames(anno.1) <- colnames(mat.1)colnames(anno.1) <- c("State"
构建一个显示的数值的函数,将plt.pie中的autopct=该函数即可。...# matplotlib设置全局字体 # 创建两组数据 x1 = [30,25, 66, 13, 23] x2 = [29, 28, 90, 19, 31] x_0 = [1,0,0,0] #用于显示空心...my_autopct(pct): total = sum(values) val = int(round(pct*total/100.0)) # 同时显示数值和占比的饼图...return '{p:.2f}% ({v:d})'.format(p=pct,v=val) return my_autopct #做出三个pie图,最后一个用作中间的空心 pie...ax.set(aspect="equal") plt.show() 生成图: ?
大热图一般是高水平SCI的标准配置,可以迅速提高文章的送审和接受率。
当我们想要在一幅图中展示多个热图时,采用传统的一页多图的方式,会导致排版的混乱,第一个例子,同时展示两幅热图以及对应的图例,代码如下 >>> import matplotlib.pyplot as plt...可以看到,默认的宽高比情况下,图例的高度大大超过了热图的高度,这种情况相下,可以通过调节figure的宽高比来使得图形显示比例正常。...第二个例子,还是显示两幅热图,但是这显示一个图例,代码如下 >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> im1 = ax1.imshow(data) >>>...对于多副热图的排版问题,在matplotlib中,可以通过ImageGrid方法来调节。...对于多副热图的排版而言,通过ImageGrid可以大大提高处理的简便性。 ·end· —如果喜欢,快分享给你的朋友们吧— 原创不易,欢迎收藏,点赞,转发!
热图可以聚合大量的数据,并可以用一种渐进色来优雅地表现,可以很直观地展现数据的疏密程度或频率高低。 本文利用R语言 pheatmap 包从头开始绘制各种漂亮的热图。...绘制热图 绘制默认热图 pheatmap(test) ?...设定 text 热图中展示数值 # display_numbers = TRUE参数设定在每个热图格子中显示相应的数值,#number_color参数设置数值字体的颜色 pheatmap(test,...order_row = A$tree_row$order #记录热图的列排序 order_col = A$tree_col$order # 按照热图的顺序,重新排原始数据 result =...R的当前工作目录下即可查看热图的结果。
origin 画热图 作为目前最常见的一种可视化手段,热图因其丰富的色彩变化和生动饱满的信息表达被广泛应用于各种大数据分析场景。...同时,专用于大数据统计分析、绘图和可视化等场景的 origin,在可视化方面也提供了热图的选项。 作者:许志伟 步骤 假如要画3个变量随着时间迭代的热图。
ONCOMINE数据库的全景热图和散点图是最常见的。怎样才能做出文章能用的类似图形呢?...这里涉及很多步骤,比如注册ONCOMINE数据库(已经介绍),怎样搜索做出ONCOMINE数据库的全景热图(这次介绍),怎样使用PPT做表做图。这里,我们选取数据少点的举例作图,掌握方法是关键。...新建一个PPT,创建表格,左图是截图,右图是用PPT中自带的表格插图,创建可以编辑的表格,背景颜色和数字都是可以直接输入的。 ? 然后,同样道理,把其余的TOX家族基因按照类似步骤做出来。 ? ?...这个图是可编辑的,以后统计其他家族基因可以复制应用。 ? 当然,oncomine数据库的功能很多,转录水平的差异分析只是其中的一部分功能而已。
领取专属 10元无门槛券
手把手带您无忧上云