首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

朴素贝叶斯 朴素贝叶斯原理

朴素贝叶斯 朴素贝叶斯原理 判别模型和生成模型 监督学习方法又分生成方法 (Generative approach) 和判别方法 (Discriminative approach)所学到的模型分别称为生成模型...朴素贝叶斯原理 朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布 P(X,Y) ,然后求得后验概率分布 P(Y|X) 。...朴素贝叶斯法的基本假设是条件独立性 \begin{aligned} P(X&=x | Y=c_{k} )=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)...因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。 朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。...GaussianNB 高斯朴素贝叶斯 特征的可能性被假设为高斯 概率密度函数: P(x_i | y_k)=\frac{1}{\sqrt{2\pi\sigma^2_{yk}}}exp(-\frac{(

25610

朴素贝叶斯 贝叶斯方法

朴素贝叶斯 贝叶斯方法 背景知识 贝叶斯分类:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 先验概率:根据以往经验和分析得到的概率。...我们用 P(Y) 来代表在没有训练数据前假设Y拥有的初始概率 后验概率:根据已经发生的事件来分析得到的概率。...以 P(X|Y) 代表假设X 成立的情下观察到Y数据的概率,因为它反映了在看到训练数据X后Y成立的置信度。 联合概率:指在多元的概率分布中多个随机变量分别满足各自条件的概率。...X与Y的联合概率表示为 P(X,Y) 或 P(XY) (假设X和Y都服从正态分布,那么P(X 的概率。...表示两个事件共同发生的概率。) 贝叶斯公式 P(Y | X)=\frac{P(X, Y)}{P(X)}=\frac{P(X|Y) P(Y)}{P(X)} 朴素贝叶斯法是典型的生成学习方法。

21210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    朴素贝叶斯

    朴素贝叶斯 叶斯分类器是一种概率框架下的统计学习分类器,对分类任务而言,假设在相关概率都已知的情况下,贝叶斯分类器考虑如何基于这些概率为样本判定最优的类标。...在开始介绍贝叶斯决策论之前,我们首先来回顾下概率论委员会常委--贝叶斯公式。 条件概率 朴素贝叶斯最核心的部分是贝叶斯法则,而贝叶斯法则的基石是条件概率。...贝叶斯法则如下: 对于给定的样本x,P(x)与类标无关,P(c)称为类先验概率,p(x | c )称为类条件概率。这时估计后验概率P(c | x)就变成为估计类先验概率和类条件概率的问题。...朴素贝叶斯分类器 不难看出:原始的贝叶斯分类器最大的问题在于联合概率密度函数的估计,首先需要根据经验来假设联合概率分布,其次当属性很多时,训练样本往往覆盖不够,参数的估计会出现很大的偏差。...相比原始贝叶斯分类器,朴素贝叶斯分类器基于单个的属性计算类条件概率更加容易操作,需要注意的是:若某个属性值在训练集中和某个类别没有一起出现过,这样会抹掉其它的属性信息,因为该样本的类条件概率被计算为0。

    78420

    朴素贝叶斯

    悲催的是,考研的时候又学习了一遍,依然不着门路,靠死记硬背过关。好在后面的学习和工作生涯中,再没有和它打过照面,直到最近开始接触机器学习。 《机器学习实战》第4章,开始介绍基于概率论的分类方法。...其实《机器学习》这本书对贝叶斯决策论有比较详细的介绍,不过涉及到比较多的数学公式,比较难懂。而本书对程序员比较友好,只涉及很少的数学知识,更多的是通过程序来阐述这一算法。...另一种有效计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中的条件和结果,即如果已知P(x | c),要求P(c | x)。其公式为: ?...朴素贝叶斯 朴素贝叶斯有两个简单的假设: 特征之间相互独立。所谓独立指的是统计意义上的独立,即一个特征出现的可能性与其它特征值无关。 每个特征同等重要。...尽管上述假设存在一些小瑕疵,但朴素贝叶斯的实际效果很好。使用公式表示如下: P(W0, W1, W2, ..., WN | c) = P(W0|c)*P(W1|c)*...

    68240

    朴素贝叶斯

    是类的先验概率; ? 是样本 ? 相对于类标记 ? 的类条件概率; ? 代表样本x出现的概率,但是给定样本x, ? 与类标记无关。因此我们只需要计算先验概率 ? 和类条件概率 ? 。...表示样本空间中各类别样本所占的比例,根据大数定律,当训练集包含充分的独立同分布样本时,因此 ? 可以根据各类样本出现的频率来进行估计。 ? 设计到关于 ?...所有属性的联合概率,如果直接根据样本出现的频率来估计会遇到极大的困难(比如假设样本的 ? 个属性都是二值的,那么样本空间就有 ?...种可能的取值,这个值往往远大于训练样本数,因此很多样本取值在训练中可能根本不会出现),因此我们直接用频率来估计 ? 是不可行的。...为解决这个问题,朴素贝叶斯提出了“属性条件独立性假设”:对已知类别,假设所有属性相互独立。于是贝叶斯公式可以改写成: ? 其中我们用样本频率估计 ? 和 ? : ? 其中 ? 表示类别为 ?

    78320

    朴素贝叶斯

    首先要明确的一点是朴素贝叶斯属于生成式模型,指导思想是贝叶斯公式。 文本分类 假设现在有一些评论数据,需要识别出这篇文本属于正向评论还是负面评论,也就是对文本进行分类。...词袋模型只考虑一篇文档中单词出现的频率(次数),用每个单词出现的频率作为文档的特征。 ? 朴素贝叶斯分类器 朴素贝叶斯分类器是一个概率分类器。假设现有的类别C={c1,c2,……cm}。...使用贝叶斯公式,将上式转换成如下形式: \hat{c}=\underset{c \in C}{\operatorname{argmax}} P(c | d)=\underset{c \in C}{\operatorname...i \in \text {positions}} \log P\left(w_{i} | c\right) 训练朴素贝叶斯分类器 训练朴素贝叶斯的过程其实就是计算先验概率和似然函数的过程。...operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|} 朴素贝叶斯分类示例

    68020

    朴素贝叶斯法

    统计是已知数据,推模型和参数。 贝叶斯理论是统计学中一个非常重要的也是出名的理论。贝叶斯学派强调的是概率的“主观性”。...频率学派强调频率的“自然属性”,认为应该使用事件在重复试验中发生的频率作为事件发生的概率估计 贝叶斯学派认为事件是具有随机性的,随机性的 根源在于不同的人对事件的认知状态不同。...频率派:该硬币出现正、反的概率各是50% 贝叶斯派:掷硬币的人知道正面朝上的概率是100%,对离他最近的人来说是80%,最远的人是50% 贝叶斯决策论 行动空间A:实际工作中可能采取的各种行动所构成的集合...\rho(\delta)=E_\varepsilon R(\theta, \delta) 贝叶斯决策满足: \rho(\delta^*)=\inf_\delta \rho(\delta) 贝叶斯公式...提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知” 一文搞懂极大似然估计 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解 ---- 满足: p(\

    38720

    朴素贝叶斯模型

    本文链接:https://blog.csdn.net/qq_27717921/article/details/78162175 朴素贝叶斯模型基于贝叶斯公式 ? 来估计后验概率 ?...由于分布对所有的c来讲都是相同的,所以对样本x的分类是取决于分子的大小的。 离散属性 ? ? 连续属性 对于连续属性,可以考虑概率密度函数,假定 ? 其中 ? 和 ?...分别代表的是第c类样本在第i个属性上取值的均值和方差。 ?...“抹去”,因此为了避免这种情况的出现,在估计概率值时需要进行平滑,而常用的平滑方法有“拉普拉斯修正”,具体来说,令N表示训练集D中可能的类别数,Ni表示第i个属性可能的取值数。...拉普拉斯修正避免了因训练集样本不充分的而导致概率估计为0的问题,并且在训练集变大时,修正过程中所引入的先验的影响也会逐渐变得可忽略,使得估值逐渐趋向实际的概率值。

    38220

    AI -朴素贝叶斯

    朴素贝叶斯原理 朴素贝叶斯是一种基于概率论和统计学的分类算法,它的核心是贝叶斯定理和特征条件独立假设。 数据分析:在处理不确定性和不完全数据集时,贝叶斯方法可以帮助我们做出更加合理的推断。...朴素贝叶斯  贝叶斯概率计算过程中,需要计算联合概率,为了简化联合概率的计算,朴素贝叶斯在贝叶斯基础上增加:特征条件独立假设,即:特征之间是互为独立的。 ...: 基于贝叶斯定理:朴素贝叶斯算法的核心是贝叶斯定理,它允许我们在已知某些特征的条件下,计算一个类别的概率。...这使得贝叶斯算法成为一种自然的统计分类方法。 条件独立假设:朴素贝叶斯算法的关键假设是特征之间在给定类别的条件下是相互独立的。...多种变体:朴素贝叶斯算法有多种变体,包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯等,这些变体主要在于它们对数据分布的不同假设。

    11110

    朴素贝叶斯算法

    最为广泛的两种分类模型是 决策树模型(Decision Tree Model) 和 朴素贝叶斯模型(Naive Bayesian Model,NBM)。...朴素贝叶斯算法思路 朴素贝叶斯法是基于 贝叶斯定理与特征条件独立假设 的分类方法,按照以前 决策树 的数据,利用朴素贝叶斯进行分类: 假设存在如下一组信息: 天气 气温 湿度 风 外出 晴朗 高温 高...晴朗 2 3 高温 2 2 高 3 4 无风 6 2 外出 9 5 多云 4 0 温暖 4 2 正常 6 1 有风 3 3 下雨 3 2 寒冷 3 1 假设所有的变量都是 独立的...又因为4个指标是相互独立的,所以: ?...朴素贝叶斯算法代码 朴素贝叶斯最重要的是构造 训练样本 ,将表: 天气 yes no 气温 yes no 湿度 yes no 风 yes no 外出 yes no 晴朗 2 3 高温 2 2 高 3 4

    53250

    sklearn 朴素贝叶斯

    朴素贝叶斯是基于贝叶斯理论的一种监督学习算法,『朴素』意思是假设所有特征两两相互独立,给出类别y和一组依赖特征[x1..xn],根据贝叶斯理论,他们有如下的关系。...P(y|x_1,...x_n) = \frac{P(y)P(x_1,...x_n|y)}{P(x_1,...x_n)} 根据贝叶斯独立性假设 P(xi|y, x1,...,x_{i-1},......不同的朴素贝叶斯分类器的差异主要在于用了不同的关于P(xi|y)分布的假设。 尽管朴素贝叶斯过于简化假设,但在实际文件分类和垃圾邮件过滤中分类效果相当不错。...朴素贝叶斯只需要少量的训练数据来估计必要的参数。(朴素贝叶斯效果好以及它适合哪种类型的数据理论解释,可参考下面的文献) 朴素贝叶斯学习器和分类器和一些复杂的方法相比,可以做到非常快。...另一方面,虽然朴素贝叶斯以分类器著称,但它是一个坏的估计,所以不必计较从predict_proba得到的概率输出。 References: H. Zhang (2004).

    61920

    朴素贝叶斯原理

    朴素贝叶斯的介绍 朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。...由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。...相对于其他精心设计的更复杂的分类算法,朴素贝叶斯分类算法是学习效率和分类效果较好的分类器之一。朴素贝叶斯算法一般应用在文本分类,垃圾邮件的分类,信用评估,钓鱼网站检测等。  ...在X_1天气不好的情况下,出门的概率: p(Y=出门|X1=不好)=1/2 为了简化联合概率的计算,朴素贝叶斯在贝叶斯基础上增加特征条件独立假设,特征之间是互为独立的。...α 是拉普拉斯平滑系数,一般指定为 1 Ni 是 F1 中符合条件 C 的样本数量 N 是在条件 C 下所有样本的总数 m 表示所有独立样本的总数 朴素贝叶斯的优缺点  朴素贝叶斯算法主要基于经典的贝叶斯公式进行推倒

    12110

    朴素贝叶斯算法

    前言         朴素贝叶斯算法是流行的十大算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。...其实这个就等于:P(B|A) * P(A) = P(AB) 二、正式的定义         朴素贝叶斯算法是基于贝叶斯定理与特征条件独立假设的分类方法,然后依据被分类项属于各个类的概率,概率最大者即为所划分的类别...比如原因 A 的条件下,患有“贝叶死”的概率,就是条件概率。         简单说来就是:贝叶斯分类算法的理论基于贝叶斯公式: ?         ...优点: 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率; 对大数量训练和查询时具有较高的速度。...); 对缺失数据不太敏感,算法也比较简单,常用于文本分类; 朴素贝叶斯对结果解释容易理解。

    76920

    朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法

    朴素贝叶斯原理 朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设。 贝叶斯定理 特征条件独立:特征条件独立假设?X的?n个特征在类确定的条件下都是条件独立的。...大大简化了计算过程,但是因为这个假设太过严格,所以会相应牺牲一定的准确率。这也是为什么称呼为朴素的原因。 4.1 朴素贝叶斯的主要优点 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。...4.2 朴素贝叶斯的主要缺点 朴素贝叶斯模型的特征条件独立假设在实际应用中往往是不成立的。 如果样本数据分布不能很好的代表样本空间分布,那先验概率容易测不准。 对输入数据的表达形式很敏感。...详细案例 算法杂货铺——分类算法之朴素贝叶斯分类 http://uml.org.cn/sjjmwj/201310221.asp 实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法 实战项目代码下载: 关注微信公众号...datanlp 然后回复 贝叶斯 即可获取下载链接。

    1.4K10

    朴素贝叶斯“朴素”在哪里?

    2.贝叶斯 2.1 贝叶斯公式 学过概率论的都应该对上面这个公式很熟悉,这里就不再细讲了。这里需要注意的点是注意区分先验概率、后验概率、联合概率三个概念。...3.朴素贝叶斯 我们以垃圾邮件识别来引出朴素贝叶斯。 我们要做的是判断上面那个邮件:“我司可办理正规发票(保真)17%增值税发票点数优惠”是否属于垃圾邮件。...1.加上条件独立假设的贝叶斯方法就是朴素贝叶斯方法(Naive Bayes)。2.由于乘法交换律,朴素贝叶斯中算出来交换词语顺序的条件概率完全一样。...上述2的意思是:对于朴素贝叶斯模型来讲,“我司可办理正规发票”与“正规发票可办理我司”是一样的,会给出相同的判别结果,这点应该很好理解,因为你有了条件独立假设,abc与cba肯定大小是一样的,自然概率也是一样的...3.6 朴素贝叶斯的应用与代码实现 编程实现拉普拉斯修正的朴素贝叶斯分类器,并以西瓜数据集3.0为训练集,对“测1”样本进行判别。

    71910

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券