首页
学习
活动
专区
圈层
工具
发布

R语言ggplot2绘制平滑曲线的折线图简单小例子

R语言ggplot2包用来画折线图的函数默认应该是带有棱角的,如果想要实现平滑的曲线好像不太容易,之前的推文介绍过 ggalt这个包 R语言的ggplot2做平滑的折线图简单小例子 R语言ggplot2...常规的折线图 library(ggplot2) df<-data.frame(x=1:10, y=sample(1:10,10)) ggplot(df) + geom_line...平滑的可以借助 geom_bump()函数 来自于ggbump这个R包 帮助文档 https://github.com/davidsjoberg/ggbump 这个链接还有很多漂亮的图 比如 ?...这个数据可视化的类型具体的应用场景是啥,我暂时还不知道 突然想到可以用这种方式来画平滑的折线图 最简单的平滑折线图 #install.packages("ggbump") library(ggbump...) library(ggplot2) library(dplyr) df<-data.frame(x=1:10, y=sample(1:10,10)) ggplot(df

3.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    答读者问:R语言ggplot2做折线图的几个细节

    给出的示例图如下 今天的推文介绍一下使用R语言的ggplot2画折线图的这几个细节如何调整 ggplot2里画折线图的函数是geom_line(),这个函数是按照y值的大小从左往右,如果要实现上图所示折线的方向可以向左拐...首先是构造一个数据 x<-c(1,2,3,2,3,5) y<-c(1,2,3,4,5,6) dat<-data.frame(x=x,y=y) 可以比较一下geom_line()和geom_path()函数两个图的差异...x<-c(1,2,3,2,3,5) y<-c(1,2,3,4,5,6) dat<-data.frame(x=x,y=y) library(ggplot2) library(patchwork)...,把数据的正值都改成负值,比如 x<-c(1,2,3,4,5) y<-c(30,25,22,18,10) dat02<-data.frame(x=x,y=y) p3的标签取绝对值就可以 p4+ scale_y_continuous(labels = abs) 第二个问题是X轴在顶部 p4+ scale_y_continuous(labels

    63710

    R语言ggplot2折线图散点图作图添加水印

    在小红书看到有的人直接截我公众号的图发,所以想看看能不能在图上添加水印,我搜索了一下看有没有现成的R包可以直接做这个事情。...找到了一个R包 tracee https://github.com/cran/tracee/tree/master 这个R包里有一个函数 ggwater() 示例 Genome assemblies...induced by dynamic subgenome dominance https://www.nature.com/articles/s41588-024-01683-0 首先用这篇论文中fig4b的数据做一个散点图和折线图...") 但是没有在ggwater()这个函数里找到调整字体的参数,我们看一下这个函数的代码 https://github.com/cran/tracee/blob/master/R/ggwater.R...可以自己添加一个修改字体的参数 ggwater2 <- function(text="Not validated",scale=1,rot=30,col="grey",alpha=.5,fontfamily

    34210

    了解绘制条形图和折线图的细节

    接下来我们就连载其中一个佼佼者的系统性学习五本书的笔记: 下面是YT的分享 上一个笔记是:R基础知识及快速检阅你的数据 第三章 条形图 条形图通常用来展示不同分类下(x轴)某个数值型变量的取值(y轴...本章将以ggplot2为主进行学习啦~~ ---- 3.1 绘制基本条形图 Q:当你有一个包含两列的数据框,一列为x轴上的位置,一列为y轴上的对应高度,基于此如何绘制条形图?...,scales = 'free_y',space = 'free_y') 第四章 折线图 折线图通常对两个连续的变量之间相互依存的关系进行可视化,x轴对应自变量, y轴对应因变量。...折线图主要针对的是连续型变量,当然也可以用于有序的离散变量 ---- 4.1 绘制折线图 Q:如何绘制基础折线图?...,我把它粗略的分成基于R语言的统计可视化,以及基于Linux的NGS数据处理: 《生信分析人员如何系统入门R(2019更新版)》 《生信分析人员如何系统入门Linux(2019更新版)》 把R的知识点路线图搞定

    8.8K10

    玩转数据地图系列之——地图上的迷你条形图

    一周前更新了一篇数据地图上的气泡散点图的内容,不知怎地,这段时间就是跟地图死磕上了,今天还是数据地图,不过是在数据地图上呈现条形图、柱形图。...之前的一篇因为有现成的作图包支持,geom_scatterpie函数不用花费太大力气就解决了数据地图上的气泡散点图问题。...可是到目前为止我还没有发现支持对应坐标位置的条形图、柱形图,这一篇是参考了知乎上大神提供的思路。...ggplot的现有图层图形中是没有直接根据点坐标生成条形图、柱形图的,所以这里我们只能曲线救国,使用线条图和误差线来进行模拟。...其实如果能换个思路,使用geom_errorh函数,想必一定了以做出横向的条形图。

    2.8K70

    数据处理基础—ggplot2了解一下

    5.8 ggplot2简介 5.8.1 什么是ggplot2 ggplot2是由Hadley Wickham设计的R软件包,它有助于数据绘图。在本实验中,我们将简要介绍该软件包的一些功能。...5.8.2 ggplot2的原理 如果要使用ggplot2绘制数据,则数据必须是数据框。 使用aes映射函数来指定数据框中的变量如何映射到图上的要素 使用geoms来指定数据在图表中的表示方式,例如。...散点图,条形图,箱形图等。 5.8.3 使用aes映射功能 该aes函数指定数据框中的变量如何映射到绘图上的要素。...现在我们可以看到,cell1和cell2中的基因表达之间似乎没有任何关联。鉴于我们counts随机生成,这并不令人惊讶。 任务2:修改上面的命令以创建折线图。提示:执行?...在这里,我们将使用R包pheatmap来执行此分析,并使用我们将命名为test的一些基因表达数据作为测试数据。

    2.2K30

    如何通过R语言制作BBC风格的精美图片

    在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如: ? 加载所有所需的R语言包 通常在R中创建图表需要安装和加载某些软件包。...请注意,对于折线图而言,折线的颜色或对于条形图而言是条形的颜色,并不是从bbc_style()函数中直接获得的,而是需要在其他标准ggplot图表函数中明确设置 。...这是一个非常简单的折线图的示例,使用了来自gapminder包的数据。...image.png 增加一条贯穿整个图片的线条 在整个图上添加一条线的最简单方法是使用geom_vline()表示垂直线,或者geom_hline()表示水平线。...例如,如果要创建带有很多条形图的条形图,并要确保每个条形图和标签之间有一定的呼吸空间,则可能是这种情况。 如果您确实保留了较大高度图的边距,那么轴和标签之间的间隙可能会更大。

    16K10

    学会这个BBC,你的图也可以上新闻啦!

    为了方便清洗可重复数据和绘制图表,BBC数据团队用R对数据进行处理和可视化,经年累月下于去年整理绘图经验并开发了R包-bbplot,帮助我们画出和BBC新闻中一样好看的图形。...加载需要的R包 使用pacman[1]软件包中的p_load函数通过以下代码一次性加载。 #安装pcaman软件包并对其他R包进行加载 if(!...对于折线图而言,折线的颜色或条形图的颜色,并不是从bbc_style()函数中直接实现的,而是需要在其他标准ggplot(ggplot2高效实用指南 (可视化脚本、工具、套路、配色))图表函数中明确设置...这是一个非常简单的折线图的示例,使用了gapminder程序包中的数据。...它实质上修改了ggplot2主题功能(ggplot2学习笔记之图形排列)中的某些参数。 例如,第一个参数是设置图标题元素的字体、大小、和字体颜色。

    5.3K20

    这50个ggplot2现成图表你居然没有从头到尾自己画一遍

    不过,我做不到,我只能做到的是可以绘制出几乎全部的图表的雏形,而且我个人觉得,把ggplot2学习到这个程度就足够了。...一张统计图就是从数据到几何对象(点、线、条形等)的图形属性(颜色、形状、大小等)的一个映射。...ggplot2的语法: ?...ggplot2 Scatterplot 这个教程侧重于8个单元: 展现单个连续变量:散点图,折线图,气泡图 进阶条形图:区域图 展现排序:棒棒糖图 展现连续变量的统计分布:条形图,箱线图,小提琴图,峰峦图...不过,如果你是R语言都没有掌握好,那么可能需要先学习我给初学者的六步系统入门R语言,知识点路线图如下: 了解常量和变量概念 加减乘除等运算(计算器) 多种数据类型(数值,字符,逻辑,因子) 多种数据结构

    2.1K10
    领券