link给你一个下标从 0 开始长度为 偶数 的整数数组 nums 。只要 nums 不是 空数组,你就重复执行以下步骤:找到 nums 中的最小值,并删除它。找到 nums 中的最大值,并删除它。...计算删除两数的平均值。两数 a 和 b 的 平均值 为 (a + b) / 2 。比方说,2 和 3 的平均值是 (2 + 3) / 2 = 2.5 。返回上述过程能得到的 不同 平均值的数目。...删除 1 和 4 ,平均值是 (1 + 4) / 2 = 2.5 ,现在 nums = [4,3] 。3. 删除 3 和 4 ,平均值是 (3 + 4) / 2 = 3.5 。...2.5 ,2.5 和 3.5 之中总共有 2 个不同的数,我们返回 2 。...把这两个数的和放入哈希表中(不需要除以 222,因为只计算不同平均值的个数,两个平均值不同,等价于两数之和不同)。
前言 在业务中,我们会遇到新老平台的数据迁移工作,如果这个时候表字段还有些许的不一样,那我们肯定不能用表数据导入导出功能了,此时,我们便会需要另一个工具,kettle。...这款软件 使用 我们新建一个转换 (这里因为我之前用过了,所以界面上有点东西) 输入配置 在输入中双击表输入 右键选择编辑步骤 按照图中所示输入你要作为数据源的数据库信息 输入能查出你要转移数据的...sql并且测试是否可以获取到数据 此时我们的数据源就配置好了 输出配置 双击输出里的 插入/更新 此时这两个图形中间会有条线(自动关联上了),如果没有我们只需要按住键盘shift键,然后鼠标点击输入拖动到...插入/更新 即可建立连接,我们此时再右键 插入/更新 ,点击编辑步骤,打开后点击新建 接下来和输入的操作一样,配置数据库的相关信息,我这里就不再展示了,因为和刚刚一样 点击目标表后面的浏览,选择你要把数据输入到哪张表里...在 用于查询的关键字 里将两张表的id作为关联 点击下面的编辑配置两张表字段之间的关联关系(注意,上面的数据库连接要是你刚刚新建的那个数据库连接信息) kettle,启动 此时,我们便可以点击右上角的启动按钮了
在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...用来标识上一层(网络层)的协议。字段值为0x0800表示上层协议为IP协议,字段值为0x0806表示上层协议是ARP协议。该字段长2字节。 Data:该字段是来自网络层的数据,在整理数据包时会提到。...字段值不同代表不同帧类型 ②Control 控制字段,定义LLC帧的类型:信息帧(I帧)、监控帧(S帧)和无编号帧(U帧) SNAP:Sub-network Access Protocol...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。
(先来一波操作,再放概念) 远程帧和数据帧非常相似,不同之处在于: (1)RTR位,数据帧为0,远程帧为1; (2)远程帧由6个场组成:帧起始,仲裁场,控制场,CRC场,应答场,帧结束,比数据帧少了数据场...(3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...总结(以下内容转载自allen6268198的博客): 由于CAN总线发送帧时,仲裁方法只依靠帧ID号,当有两个相同ID号的帧同时竞争总线时,总线就无法判别出让哪个设备先发送帧,于是就造成总线冲突。...由于CAN总线仲裁时,数据帧发送的优先级高于远程帧,即使有别的节点设备也在发送以B_ID为ID号的远程帧,因为远程帧除了ID号不同,其他都相同。所以不会造成总线冲突。
我们生信技能树有个学徒在过来中山进行学习的时候,学到了单细胞部分,然后他做了两个同样组织样本的数据,问:我这两个不同的数据集中,怎么样比较A数据集中的比如上皮细胞亚群与B数据集中的上皮细胞亚群是不是同一种上皮细胞亚群呢...首先,来问问你的私人顾问人工智能大模型kimi kimi(https://kimi.moonshot.cn/):两个不同数据集的单细胞降维聚类分群结果如何对应?...在单细胞转录组学研究中,将两个不同数据集的降维聚类分群结果进行对应是一个常见的问题,尤其是在跨样本、跨物种或跨实验条件的研究中。以下是几种常用的方法来实现这种对应关系: 1....比较注释结果:比较两个数据集中相同细胞类型的聚类。 4....: 当然,这是非常简单粗暴的方法,下一期我们将介绍不同算法数据整合的时候,整合的思想与这里的异同点。
有很多初学者遇到的问题,写出来,更好的自我总结,正所谓:“学然后知不足,教然后知困”。以输出(写博客)倒逼输入(学习),被动学习, kill time,是一个不错的方法。...https://stackoverflow.com/questions/12478943/how-to-group-data-table-by-multiple-columns 实际工作中,我们需要对数据进行平均值计算...,这里我比较了aggregate和data.table的方法,测试主要包括: 1,对数据yield计算平均值 2,计算N不同水平的平均值 3, 计算N和P不同水平的平均值 1....npk[,mean(yield),by=c("N","P")] # 两个变量的另一种写法 npk[,mean(yield),by=list(N,P)] npk[,mean(yield),by=....c("N","P")] N P V1 1: 0 1 52.41667 2: 1 1 56.15000 3: 0 0 51.71667 4: 1 0 59.21667 > > > # 两个变量的另一种写法
1.git 合并两个不同的仓库必备知识 1>.列出本地已经存在的分支 git branch 2>.查看当前 git 关联的远程仓库 git remote -v 3>.解除当前仓库关联的远程仓库 git...git checkout -b master origin/master //从其他的远程仓库切出一个新分支( //注意同一个仓库中不能存在2个同名分支,所以取个别名,但是同一个仓库中不同的分支可以关联多个远程仓库...# 《常见的 git 命令》 2.实际操作 1.项目仓库 现在有两个仓库 [leader/kkt](https://www.leader755.com) (主仓库)和 [leader/kkt-next]...作为远程仓库,添加到 kkt 中,设置别名为 other git remote add other git@github.com:kktjs/kkt-next.git 4.从 kkt-next(子) 仓库中拉取数据到本仓库...merge unrelated histories` # 请执行下面命令 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ git merge other --allow-unrelated-histories 在合并时有可能两个分支对同一个文件都做了修改
以下全文代码和数据均已发布至和鲸社区,复制下面链接或者阅读原文前往,可一键fork跑通: https://www.heywhale.com/mw/project/62f9033c738412246370ef04...前不久在测试python代码的时候,我发现了两个不容易被人关注到的小坑(也有可能是我没注意到,哈哈哈)。...',b) print('改变后的a',a) 二、python中的“np.nanmean”、“xarray.mean” 这个呢,是python中求平均值的小坑(当计算的数据中存在nan值时会出现)。...(也就是这五个数加起来的平均值)。...np.nanmean(ds['temp']) 当我们使用xarray.mean()方法并同时输入两个维度“lat”“lon”计算时,可以看到是正确的结果。
去除细胞效应和基因效应 06.单细胞转录组数据的降维聚类分群 07.单细胞转录组数据处理之细胞亚群注释 08.把拿到的亚群进行更细致的分群 09.单细胞转录组数据处理之细胞亚群比例比较 以及各式各样的个性化汇总教程...合并两个不同panel的cytof数据集 有一些情况下,你的同一个实验项目的多个FCS文件,它们的抗体顺序并不一致。...prepData(fs, panel, md, features = panel$fcs_colname) rowData(sce1)[,1] rowData(sce2)[,1] 可以看到,两个数据集的...SingleCellExperiment对象就包含了两个不同panel顺序的cytof数据集啦。...如果不仅仅是panel顺序不一样 panel本身也不一样,就比较麻烦了,不同的panel可能研究的生物学问题不一样,或许有批次效应等其它未知的混杂因素。 需要具体问题具体分析啦。
SAP自带的函数: CTVB_COMPARE_TABLES和BKK_COMPARE_TABLES; 似乎可以比较两个内表,得出第二个内表不同于第一个内表的部分...因为,我在测试数据时,发现这两个函数的效果不那么简单。 如果上述函数确实可以,提取两个内表不同部分,则我可以据此做两次比较,得到两个内表的交集。...以下转自华亭博客:感谢华亭的分享: 函数模块:CTVB_COMPARE_TABLES 这个函数模块比较两个内表,将被删除、增加和修改的内表行分别分组输出。...,做为内表行是否为增加的判断条件。...输出参数: TABLE_DEL:被删除的行 TABLE_ADD:被增加的行 TABLE_MOD:被修改的行 NO_CHANGES:表没有被修改的标记,如果这个标记为 “X”,就不必去读前面三个内表了
现在有两个数组array1和array2是我们筛选的对象 let list= []; list = this.array1.filter(item=>{ return array2.indexOf...(item) == -1 }); 这样list就会返回两个数组中不同的元素重新组合成数组list list中的每一个元素就是array1和array2中所有不相同的元素
ex2.m %% Machine Learning Online Class - Exercise 2: Logistic Regression % % In...
这两个数据集分别是人和鼠的SMC异质性探索的,文献标题是:《Single-Cell Genomics Reveals a Novel Cell State During Smooth Muscle Cell...,因为小鼠基因的命名规则通常包括将所有字母转换为小写,这与人类基因的命名规则不同,后者通常以大写字母开头。...其实在进行跨物种的基因研究时,研究人员需要仔细核对基因的命名和序列信息,以确保研究的准确性。可以使用如Ensembl、UniProt或NCBI Gene等数据库来获取不同物种中基因的准确信息。..., 如下所示: 两个物种仍然是泾渭分明的 但是一般人都会忽略它,其实是RunHarmony函数可以修改参数的,比如同时抹去样品和数据集的差异,代码如下所示; seuratObj <- RunHarmony...: 两个物种就比较好的整合在一起 而且也是可以比较好的进行亚群的命名,跟原文一样的有两个泾渭分明的内皮细胞,然后就是t细胞和巨噬细胞代表的淋巴细胞和髓系免疫细胞啦 ,同样的文献里面的巨噬细胞和平滑肌细胞的界限也是模糊不清
我们这期主要讨论Mobus协议帧内部的结构(PDU和ADU)。 Modubs PDU MODBUS协议定义了一个简单的协议数据单元(PDU),这个定义是独立于底层通信层的。...下图即在串行总线上的PDU通信帧结构。...客户端发送到服务器设备的消息的数据字段包含服务器用来执行功能码定义的操作的额外信息。这可能包括离散和寄存器地址、要处理的项目数量以及字段中实际数据字节的计数。...RTU、ASCII和TCP协议帧 我们先通过内部的PDU结构图来看看: Modbus RTU协议帧: Modbus ASCII协议帧: Modbus TCP协议帧: MODBUS PDU的大小受到从最初的串行线路网络...三种不同类型的PDU MODBUS协议定义了三种PDUs(协议数据单元),它们是: MODBUS请求PDU,mb_req_pdu MODBUS响应PDU,mb_rsp_pdu MODBUS异常响应PDU
但是不同的GSE数据集有不同的临床信息,那么我们应该挑选合适的临床信息来进行分组呢?...这里面涉及到两个问题,首先是能否看懂数据集配套的文章,从而达到正确的生物学意义的分组,其次能否通过R代码实现这个分组。同样的我也是安排学徒完成了部分任务并且总结出来了!...library(GEOquery) # 这个包需要注意两个配置,一般来说自动化的配置是足够的。...a) #a现在是一个对象,取a这个对象通过看说明书知道要用exprs这个函数 dim(dat)#看一下dat这个矩阵的维度 dat[1:4,1:4] #查看dat这个矩阵的1至4行和1至4列,逗号前为行...,在不同的情况下选取最合适当下的方法,方便自己去做后续的数据分析。
import difflib a = open('./1.txt', 'U').readlines() b = open('./2.txt', 'U').re...
小勤:怎么提取两个单元格里不同的内容啊?...大海:这里有几种情况哦: 1、只要“文本1”里有“文本2”里没有的 2、只要“文本2”里有“文本1”里没有的 3、上面两种情况的都要 小勤:还这么复杂…… 大海:问题难通常都是因为说清楚,呵呵。...大海:很简单,对“文本1“删除(Text.Remove)”文本2“的内容(Text.ToList)即可,如下所示: 小勤:嗯。那第2种情况跟第1种情况的处理方法是完全一样的啊。 大海:对的。...第3种情况的话也就简单了,将第1种情况和第2种情况的结果连在一起: 小勤:嗯。关键还是把最终要什么给想清楚。
JDK8利用Stream API对比筛选两个List的不同数据 业务场景:对比两个List的里面嵌套的子List数据,然后筛选出其中一个List对比不同的数据 业务场景也不是很常见,但是这里面又嵌套了两层的...先遍历一下,然后提取数据:是先在A1类里加个text字段,然后遍历子List,做下排序,然后拼接到字段里,为后面两个List做字段对比做铺垫 listA1.stream().forEach(e -> {...A1 a = new A1(); a.setA1Text(aText); }); 对于另外一个List也是同样操作,将subList的数据拼到一个字段里...List的字段,然后筛选出数据 List filterList = listA1.stream() .filter( e...API,将两个List的数据进行对比,然后提取数据,场景不是很常见,读者没遇到过可能不能很好理解,简单记录一下,方便之后查看
近几年的研究结果表明,多划分(sub-partition)和多参考行(Multiple reference line)帧内预测技术可以进一步提高帧内预测的性能。...如图2所示, 2Nx2N是指当前预测单元的尺寸和编码单元的尺寸相同,NxN是指当前编码单元被划分成4个大小相等的预测单元,每个预测单元的宽和高的尺寸都是其编码单元的一半,且每个预测单元可以有不同的帧内预测方向...图 2 二、 HEVC标准制定前后多划分及多参考行帧内预测技术的演进 在HEVC标准制定的初期阶段, JCTVC-A111 [2] 以及JCTVC-A118 [3] 提出了基于行或列的帧内预测技术。...与NxN划分类型相同, 2NxhN以及hNx2N划分类型中的每个预测单元可以有不同的帧内预测方向。...图 3 又经过多轮的改进和简化, JCTVC-G135 [5] 中将SDIP模式中的预测单元划分类型简化为2NxN以及Nx2N,在这两种预测单元类型中,当前编码单元被划分成水平或者垂直方向的两个子块。
课程参与者们组成团队来开发数据驱动的Web应用程序,并与来自技术公司的数据科学家会面。这些课程还是免费的:成本由科技公司负担,包括支付雇员工资。...经过一周半的课程学习,学生们分成小组与来自当地公司的导师一起针对公司提供的数据构建实用性工具。...这些大学的数据科学中心同时还获得了来自加利福尼亚帕洛阿尔托的戈登贝蒂摩尔基金会(Gordon and Betty Moore Foundation)【译者注:该基金会由“摩尔定律”提出者戈登·摩尔创立】...和来自纽约的斯隆基金会(Alfred P....来自UCB新设立的数据科学伯克利研究院的助理研究员卡西克·拉姆(Karthik Ram)是第一个受资助者。
领取专属 10元无门槛券
手把手带您无忧上云