构建数据湖是一个关键的数据管理策略,它可以帮助企业实现数据的统一存储、分析和管理。数据湖是一个集中存储原始数据的地方,可以包括结构化数据、半结构化数据和非结构化数据。数据湖可以帮助企业更好地理解其数据,并从中获取有价值的见解。
在构建数据湖时,需要考虑以下几个方面:
推荐的腾讯云相关产品和产品介绍链接地址:
这些产品可以帮助企业构建一个高效、安全、可靠的数据湖,从而实现数据的价值。
在Yotpo,我们有许多微服务和数据库,因此将数据传输到集中式数据湖中的需求至关重要。我们一直在寻找易于使用的基础架构(仅需配置),以节省工程师的时间。...在开始使用CDC之前,我们维护了将数据库表全量加载到数据湖中的工作流,该工作流包括扫描全表并用Parquet文件覆盖S3目录。但该方法不可扩展,会导致数据库过载,而且很费时间。...我们希望能够查询最新的数据集,并将数据放入数据湖中(例如Amazon s3[3]和Hive metastore[4]中的数据),以确保数据最终位置的正确性。...采用这种架构后,我们在数据湖中获得了最新、被完全监控的生产数据库副本。 基本思路是只要数据库中发生变更(创建/更新/删除),就会提取数据库日志并将其发送至Apache Kafka[5]。...使用数据湖最大的挑战之一是更新现有数据集中的数据。在经典的基于文件的数据湖体系结构中,当我们要更新一行时,必须读取整个最新数据集并将其重写。
介绍 一开始,规划数据湖似乎是一项艰巨的任务——决定如何最好地构建数据湖、选择哪种文件格式、是拥有多个数据湖还是只有一个数据湖、如何保护和管理数据湖。...构建数据湖没有明确的指南,每个场景在摄取、处理、消费和治理方面都是独一无二的。...在之前的博客中,我介绍了数据湖和 Azure 数据湖存储 (ADLS) gen2 的重要性,但本博客旨在为即将踏上数据湖之旅的人提供指导,涵盖构建数据湖的基本概念和注意事项ADLS gen2 上的数据湖...Azure 中的每个资源都存在与管理和运营相关的开销,以确保适当地维护预配、安全性和治理(包括备份和 DR)。是否创建一个或多个帐户的问题没有明确的答案,它需要根据您的独特情况进行思考和计划。...如果需要提取或分析原始数据,这些过程可以针对此中间层而不是原始层更有效地运行。 使用生命周期管理归档原始数据以降低长期存储成本,而无需删除数据。 结论 没有一种万能的方法来设计和构建数据湖。
Apache Hudi 是一个流式数据湖平台,将核心仓库和数据库功能直接引入数据湖。...这可以显着改进流处理,因为 Hudi 包含每个记录的到达时间和事件时间,从而可以为复杂的流处理管道构建强大的水印[9]。...活跃的企业 Hudi 数据湖存储大量小型 Parquet 和 Avro 文件。MinIO 包括许多小文件优化[13],可实现更快的数据湖。...增量查询对于 Hudi 来说非常重要,因为它允许您在批处理数据上构建流式管道。...推荐阅读 基于Apache Hudi + Linkis构建数据湖实践 万字长文:基于Apache Hudi + Flink多流拼接(大宽表)最佳实践 字节跳动基于 Apache Hudi 构建实时数仓的实践
我们的平台很早就部署了WDS全家桶给业务用户和数据分析用户使用。...近段时间,我们也调研和实现了hudi作为我们数据湖落地的方案,他帮助我们解决了在hdfs上进行实时upsert的问题,让我们能够完成诸如实时ETL,实时对账等项目。...hudi作为一个数据湖的实现,我觉得他也是一种数据存储方案,所以我也希望它能够由Linkis来进行管理,这样我们的平台就可以统一起来对外提供能力。...4.Linkis引入Hudi之后的一些优点和应用介绍 • 实时ETL 将hudi引入到Linkis之后,我们可以直接通过streamis编写实时ETL任务,将业务表近实时地落到hudi,用户看到的最新的数据将是分钟级别的最新数据...,而不是t-1或者几小时前的数据。
Apache Hudi 是一个流式数据湖平台,将核心仓库和数据库功能直接引入数据湖。...这可以显着改进流处理,因为 Hudi 包含每个记录的到达时间和事件时间,从而可以为复杂的流处理管道构建强大的水印[9]。...活跃的企业 Hudi 数据湖存储大量小型 Parquet 和 Avro 文件。MinIO 包括许多小文件优化[13],可实现更快的数据湖。...Hudi 依靠 Avro 来存储、管理和发展表的模式。Hudi 为数据湖提供 ACID 事务保证。...增量查询对于 Hudi 来说非常重要,因为它允许您在批处理数据上构建流式管道。
对数据湖的需求 在 NoBrokercom[1],出于操作目的,事务数据存储在基于 SQL 的数据库中,事件数据存储在 No-SQL 数据库中。这些应用程序 dB 未针对分析工作负载进行调整。...它的一个组成部分是构建针对分析优化的数据存储层。Parquet 和 ORC 数据格式提供此功能,但它们缺少更新和删除功能。...尽管提供的默认功能有限,但它允许使用可扩展的 Java 类进行定制。 源读取器 源读取器是 Hudi 数据处理中的第一个也是最重要的模块,用于从上游读取数据。...我们从布隆过滤器开始,但随着数据的增加和用例的发展,我们转向 HBase 索引,它提供了非常快速的行元数据检索。 HBase 索引将我们的 ETL 管道的资源需求减少了 30%。...Schema写入器 一旦数据被写入云存储,我们应该能够在我们的平台上自动发现它。为此,Hudi 提供了一个模式编写器,它可以更新任何用户指定的模式存储库,了解新数据库、表和添加到数据湖的列。
大数据和数据湖的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...这些数据可能都是完全相关和准确的,但如果用户找不到他们需要的东西,那么湖本身就没有价值。从本质上讲,数据淹没是指数据量如此之大,以至于您无法找到其中的内容。...文件夹结构本身可以任意详细,我们自己遵循一个特定的结构: 原始数据区域是进入湖的任何文件的着陆点,每个数据源都有子文件夹。...我们创建的框架或我们赋予它的过程没有什么复杂的,但是让每个人都了解它的意图和数据湖的一般用途是非常重要的。
数据仓库、数据湖和数据流的概念和架构数据库可以为解决业务问题提供补充。本文介绍了如何使用原生云技术构建现代数据堆栈。...构建云原生数据仓库和数据湖的最佳实践 以下探索一下通过数据仓库、数据湖、数据流和湖屋构建原生云数据分析基础设施的经验和教训: 教训1:在正确的地方处理和存储数据 首先要问问自己:数据的用例是什么?...但是,即使不使用数据流,只使用静止数据构建数据网格,也没有什么灵丹妙药。不要试图用单一的产品、技术或供应商构建一个数据网格。无论该工具是专注于实时数据流、批处理和分析,还是基于API的接口。...(3)云原生数据仓库的最佳实践超越SaaS产品 构建原生云数据仓库或数据湖是一个庞大的项目。它需要数据摄入、数据集成、与分析平台的连接、数据隐私和安全模式等等。...在报告或分析等实际任务开始之前,所有这些都是必需的。 超出数据仓库或数据湖范围的完整企业架构甚至更加复杂。必须应用最佳实践来构建一个有弹性的、可扩展、弹性的和具有成本效益的数据分析基础设施。
我们已经探索了[1] MinIO 和 Hudi 如何协同工作来构建现代数据湖。...这种兼容性代表了现代数据湖架构中的一个重要模式。 HMS集成:增强数据治理和管理 虽然 Hudi 提供开箱即用的核心数据管理功能,但与 HMS 集成增加了另一层控制和可见性。...以下是 HMS 集成如何使大规模 Hudi 部署受益: • 改进的数据治理:HMS 集中元数据管理,在整个数据湖中实现一致的访问控制、沿袭跟踪和审计。这可确保数据质量、合规性并简化治理流程。...hudiDF.select("language").distinct() uniqueLanguages.show() // Stop the Spark session System.exit(0) 构建云原生现代数据湖...Hudi、MinIO 和 HMS 无缝协作,为构建和管理大规模现代数据湖提供全面的解决方案。
数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...架构可以称为真正的实时数仓,目前在业界最常用实现就是Flink + Kafka,然而基于Kafka+Flink的实时数仓方案也有几个非常明显的缺陷,所以在目前很多企业中实时数仓构建中经常使用混合架构,没有实现所有业务都采用...数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。...三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片
云原生的新一代数据架构不再遵循数据湖或数据仓库的单一经典架构,而是在一定程度上结合二者的优势重新构建。在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。...本文,InfoQ 采访了 OPPO 云数架构部部长鲍永成,请他与我们分享 OPPO 引入数据湖和数仓融合架构的探索工作和实践中的一些思考。 1当我们谈数据湖,谈的是什么? ...企业应用好他们,可以助力自身构建批流一体、仓湖融合的大数据架构。 2仓湖融合架构升级的三个阶段 InfoQ:OPPO 是什么时候决定要引入数据湖和数仓融合架构的?能否介绍下当时的整个背景情况?...鲍永成:引入 Iceberg 构建我们的数据湖方案,主要出于两点考虑。 一. 云数融合:OPPO 已经基于 K8S, 构建了自己的云平台,主要数据存在对象存储 OCS 上。...无论是数据湖,还是数据仓库的数据,只有运转在这套体系下,才能得到高效利用。在上述能力具备的条件下,解决好湖数据快速构建 schema、湖与仓的元数据统一问题,仓湖自然融合。
要管理这种快速增长,同时满足关键产品和分析用例不断增长的数据需求,尤其是我们最近的 Notion AI 功能,意味着构建和扩展 Notion 的数据湖。以下来介绍我们是如何做到的。...随着对线上和线下数据需求的增加,我们意识到构建一个专用的数据基础设施来处理离线数据而不干扰在线流量至关重要。...由于这些挑战,我们开始探索构建我们的数据湖。 构建和扩展 Notion 的内部数据湖 以下是我们构建内部数据湖的目标: • 建立一个能够大规模存储原始数据和处理数据的数据存储库。...Notion 数据湖将主要关注可以容忍几分钟到几小时延迟的离线工作负载。 数据湖的高级设计 自 2022 年以来,我们一直使用如下所示的内部数据湖架构。...设计决策 1:选择数据存储库和湖 我们的第一个决定是将 S3 用作数据存储库和湖来存储所有原始和处理过的数据,并将数据仓库和其他面向产品的数据存储(如 ElasticSearch、Vector Database
什么是Apache Hudi Apache Hudi是一个存储抽象框架,可帮助组织构建和管理PB级数据湖,通过使用upsert和增量拉取等原语,Hudi将流式处理带到了类似批处理的大数据中。...在没有其他可行的开源解决方案可供使用的情况下,我们于2016年末为Uber构建并启动了Hudi,以构建可促进大规模快速,可靠数据更新的事务性数据湖。...当Hudi毕业于Apache软件基金会下的顶级项目时,Uber的大数据团队总结了促使我们构建Hudi的各种考虑因素,包括: 如何提高数据存储和处理效率? 如何确保数据湖包含高质量的表?...Apache Hudi场景包括数据分析和基础架构运行状况监视 Hudi通过对数据集强制schema,帮助用户构建更强大、更新鲜的数据湖,从而提供高质量的见解。...Hudi使Uber和其他公司可以使用开放源文件格式,在未来证明其数据湖的速度,可靠性和交易能力,从而消除了许多大数据挑战,并构建了丰富而可移植的数据应用程序。
为了处理现代应用程序产生的数据,大数据的应用是非常必要的,考虑到这一点,本博客旨在提供一个关于如何创建数据湖的小教程,该数据湖从应用程序的数据库中读取任何更改并将其写入数据湖中的相关位置,我们将为此使用的工具如下...: • Debezium • MySQL • Apache Kafka • Apache Hudi • Apache Spark 我们将要构建的数据湖架构如下: 第一步是使用 Debezium 读取关系数据库中发生的所有更改...现在,由于我们正在 Google Cloud 上构建解决方案,因此最好的方法是使用 Google Cloud Dataproc[5]。...结论 可以通过多种方式构建数据湖。我试图展示如何使用 Debezium[6]、Kafka[7]、Hudi[8]、Spark[9] 和 Google Cloud 构建数据湖。...这里显示的 Hudi 也可以与 Presto[10]、Hive[11] 或 Trino[12] 集成。定制的数量是无穷无尽的。本文提供了有关如何使用上述工具构建基本数据管道的基本介绍!
语义能力方面比较吃力 >架构复杂,涉及多个系统协调,靠调度系统来构建任务依赖关系 2.Lambda 架构 >同时维护实时平台和离线平台两套引擎,运维成本高 >实时离线两个平台需要维护两套框架不同但业务逻辑相同代码...,且当前无法使用 OLAP 引擎直接分析消息队列 中的数据 >全链路依赖消息队列的实时计算可能因为数据的时序性导致结果不正确 4.数据湖 >支持数据高效的回溯能力 >支持数据的更新 >支持数据的批流读写...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。
然后,他们可以将高度结构化的数据存储在数据仓库中,BI 分析师可以在其中构建目标销售预测。此外,他们可以使用数据湖中相同的销售数据和社交媒体趋势来构建智能机器学习模型,以在其网站上进行个性化推荐。...设计数据湖的关键考虑因素# 当您在 ADLS Gen2 上构建企业数据湖时,了解您对关键用例的需求很重要,包括 我在数据湖中存储了什么? 我在数据湖中存储了多少数据?...术语# 在我们讨论构建数据湖的最佳实践之前,熟悉我们将在使用 ADLS Gen2 构建数据湖的上下文中使用的各种术语非常重要。本文档假设您在 Azure 中有一个帐户。...重要的是要记住,集中式和联合数据湖策略都可以使用一个存储帐户或多个存储帐户来实施。 客户问我们的一个常见问题是,他们是否可以在单个存储帐户中构建数据湖,或者他们是否需要多个存储帐户。...当我们与客户合作制定他们的数据湖策略时,一个非常常见的讨论点是他们如何最好地组织他们的数据。有多种方法可以在数据湖中组织数据,本节记录了许多构建数据平台的客户采用的通用方法。
作者 | 王夏、滕昱、孙伟 编辑 | 蔡芳芳 1什么是数据湖?为什么是数据湖?...本文所要介绍的数据湖解决方案可能是解决这个难题的一种新思路。 数据湖,实质上是一种数字资产的组织形式。...而在本文将会介绍的数据湖方案中,结构化数据并不再依赖(或减少依赖)特定的数据仓库方案。...使用 Apache Iceberg 和 ECS,可以构建出一套完整的、针对结构化数据的数据湖解决方案。...4总结 在对 Apache Iceberg 进入深入探索后,我们作为对象存储产品的提供方,对数据湖的解决方案有了一些思考。
数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...伴随数字化在各行各业的深化发展,企业不但需要面向业务的「交易核心」,同时更需要构建面向企业全量数据价值的「数据核心」。...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。
关于Nishith Agarwal更详细的介绍,主要从事数据方面的工作,包括摄取标准化,数据湖原语等。 ? 什么是数据湖?数据湖是一个集中式的存储,允许以任意规模存储结构化和非结构化数据。...接着看看对于构建PB级数据湖有哪些关键的要求 ?...第四个要求:事务写(ACID能力) 传统数据湖在数据写入时的事务性方面做得不太好,但随着越来越多的业务关键处理流程移至数据湖,情况也在发生变化,我们需要一种机制来原子地发布一批数据,即仅保存有效数据,部分失败必须回滚而不会损坏已有数据集...第五个要求:更快地派生/ETL数据(增量处理) 仅仅能快速摄取数据还不够,我们还需要具有计算派生数据的能力,没有这个能力,数据工程师通常会绕过原始表来构建其派生/ETL并最终破坏整个体系结构。...若为工作负载分配的资源不足,可能就会严重损害摄取延迟。 ? 在真实场景中,会将ETL链接在一起来构建数据管道,问题会变得更加复杂。 ?
CDC 和数据湖 CDC(CHANGE DATA CAPTURE)是一种软件设计模式,用于确定和跟踪已变更的数据,以便可以对更改后的数据采取措施。...接下来要考虑的就是数据存在哪里,结合上文提到的“计算存储分离”原则, 这也是数据湖提供的一个优势,数据湖一般使用类似文件系统存储(对象存储或传统的HDFS)来构建,恰好符合我们的预期。...,国内基于Hudi构建数据湖的公司越来越多。...2.实时数据入湖到可查询的时间缩短,虽然我们的采用的是 COW 的表模式,但实际测试发现入湖到可查询的时效性并不低,基本都在分钟级。...但在实际应用中,数据湖中的很多数据不光是实时的数据,还有很多是需要通过离线计算获得的,假如某张表的一部分字段是 CDC 的直接反映,另一部分字段是离线任务的计算结果,这就会带来并发写的需求。 ?
领取专属 10元无门槛券
手把手带您无忧上云