, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64)
)
# 紧跟着要进行四次这样的单元...# 构建辅助函数,使[b, 64, h, w] => [b, 128, h, w]
self.blk1 = ResBlk(64, 128)
# 构建辅助函数...1024, h, w]
self.blk4 = ResBlk(512, 1024)
接下来构建ResNet-18的forward函数
def forward(self, x):...由于我们要进行10分类问题,要将添加代码
self.outlayer = nn.Linear(1024, 10)
和
x = self.outlayer(x)
return x
为确定具体维度大小,我们先构建假数据...# 构建辅助函数,使[b, 64, h, w] => [b, 128, h, w]
self.blk1 = ResBlk(64, 128)
# 构建辅助函数