(2)stack - 输出当前方法被调用的调用路径, 一个方法被执行的路径非常多,不知道这个方法是从那里被执行,就可以采用
一般 Unix 系统中,用户态的程序通过malloc()调用申请内存。如果返回值是 NULL, 说明此时操作系统没有空闲内存。这种情况下,用户程序可以选择直接退出并打印异常信息或尝试进行 GC 回收内存。然而 Linux 系统总会先满足用户程序malloc请求,并分配一片虚拟内存地址。只有在程序第一次touch到这片内存时,操作系统才会分配物理内存给进程。具体我们可以看下如下demo:
概述 jps 命令类似与 linux 的 ps 命令,但是它只列出系统中所有的 Java 应用程序。 通过 jps 命令可以方便地查看 Java 进程的启动类、传入参数和 Java 虚拟机参数等信息。
Linux 内核有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽而内核会把该进程杀掉。
在实际的业务场景中,我们往往倾向于认为容器环境与虚拟机一样,可以完全自定义不同参数的虚拟 CPU 和虚拟 Memory 资源。其实,从本质上而言,容器更倾向于一种隔离机制环境,其中一个进程的资源( CPU、内存、文件系统、网络等)与另一个进程隔离。这种隔离是可能的,因为 Linux 内核中有一个名为 CGroups 的特性。然而,一些从执行环境收集信息的应用程序在 CGroup 存在之前就已经实现了。像大多数常用的命令行 “top”、“free”、“ps” 等诸如此类的工具,甚至 JVM 都没有针对在容器内执行进行优化,毕竟,容器是一个高度受限的 Linux 进程。
当我们将 JVM 生态中的关键要素,例如,垃圾收集器、堆大小和运行时编译器设置默认值时,许多技术人员(开发、运维人员)或许应该意识到在 Linux 容器生态中(诸如,Docker、Rkt、RunC、Lxcfs 等)内所运行的 Java 进程的实际行为与预期不符。当我们在没有任何调优参数(例如,最为简洁的的启动命令行:“ java -jar myapplication .jar”)的情况下执行 Java 应用程序时,JVM 将自行调整某些特定的参数,以在当前执行环境中获得最佳性能表现。
jps位于jdk的bin目录下,其作用是显示当前系统的java进程情况,及其id号。 jps相当于Solaris进程工具ps。不象”pgrep java”或”ps -ef grep java”,jps并不使用应用程序名来查找JVM实例。因此,它查找所有的Java应用程序,包括即使没有使用java执行体的那种(例如,定制的启动 器)。另外,jps仅查找当前用户的Java进程,而不是当前系统中的所有进程。
Linux 内存管理模型不是咱们这个系列的讨论重点,我们这里只会简单提一些对于咱们这个系列需要了解到的,如果读者想要深入理解,建议大家查看 bin 神(公众号:bin 的技术小屋)的系列文章:一步一图带你深入理解 Linux 虚拟内存管理
值此七夕佳节,烟哥放弃了无数妹纸的邀约,坐在电脑面前码字,就是为了给读者带来新的知识,这是一件伟大的事业! 好吧,实际情况是没人约。为了化解尴尬,我决定卖力写文章,嗯,一定是我过于屌丝! 好了,开始说重点。今天讲的这个问题
Zabbix自带监控系统的内存利用率和CPU利用率,但是系统内存并不能反应JVM内存情况
java方面 java中的引用有几种? Java中的threadlocal是怎么用的? threadlocal中的内部实现是怎么样的? 哪种引用? java中的"final"关键字在多线程的语义中,有
jstat用法 其中-gc可以换成-class 、-gcnew、-gcold等参数;而54992表示的JVM的进程id(可能通过上面的jps命令查看) ;4s表求每4秒打印一次,后面的3表求共打印三次。 打印的各参数含义如下: 1:S0C、S1C、S0U、S1U:Survivor 0/1区容量(Capacity)和使用量(Used) 2:EC、EU:Eden区容量和使用量 3:OC、OU:年老代容量和使用量 4:MC、MU:元数据区容量和使用量 5:CCSC、CCSU:压缩类空间容量和使用量 5:YGC、YGT:年轻代GC次数和GC耗时 6:FGC、FGCT:Full GC次数和Full GC耗时 7:GCT:GC总耗时 jstat可以用来判断系统是否出现了内存泄漏,方法是通过一短长时间的观察OU的增长情况,如果OU稳定增长,则有可能出现内存泄漏。
jps是java提供的一个显示当前所有java进程pid的命令,适合在linux/unix平台上简单察看当前java进程的一些简单情况。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
Arthas 是一款线上监控诊断产品,通过全局视角实时查看应用 load、内存、gc、线程的状态信息,并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参、异常,监测方法执行耗时,类加载信息等,大大提升线上问题排查效率。
该命令主要与jmap搭配使用,用来分析jmap转储的转储快照。其中构建了一个微型的http/html服务器。生成dump文件的分析结果后可以通过浏览器进行查看。 通常情况下不采用jhat进行分析,一方面,分析工作需要耗费额外的资源和时间,既然都要在其他机器进行,则不需要限定于上述工具。另外一方面,jhat界面比较简陋,可以用visualVM,eclipse的Memory Analizer 等更加专业的分析工具进行替换。
比较常用的参数: -q 只显示pid,不显示class名称,jar文件名和传递给main 方法的参数
我们前面介绍了元空间的组成元素,但是没有将他们完整的串联起来,我们这里举一个简单的例子,将之前的所有元素串联起来。
Java中,引用和对象是有关联的。如果要操作对象则必须引用进行。因此,简单的办法是通过引用计数来判断一个对象是否可以回收。简单的说,给对象中添加一个引用计数,每当有一个引用失效时,计数器值减1,任何时刻计数器值为0的对象就是不可能再被利用的,那么这个对象就是可回收对象。那么为什么主流的Java虚拟机里面都没有选择这种算法呢?主要的原因是它很难解决对象之间相互循环引用的问题。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
之前写了JConsole、VisualVM 依赖的 JMX 技术,然后放出了一个用纯 JMX 实现的 web 版本的 JConsole 的截图,今天源码来了。
Java 凭借着自身活跃的开源社区和完善的生态优势,在过去的二十几年一直是最受欢迎的编程语言之一。步入云原生时代,蓬勃发展的云原生技术释放云计算红利,推动业务进行云原生化改造,加速企业数字化转型。
有些时候我们需要查看jvm的运行参数,这个需求可能会存在2种情况: 第一,运行java命令时打印出运行参数; 第二,查看正在运行的java进程的参数;
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
JVM本质就是一个进程,因此其内存空间(也称之为运行时数据区,注意与JMM的区别)也有进程的一般特点。深入浅出 Java 中 JVM 内存管理,这篇参考下。
目前采用微服务架构已经逐渐成为企业架构的标准范式,而大多微服务是基于Spring Cloud框架来进行应用的构建的,所以在开发实践中,甚至生产环境中,会遇到java相关问题,例如系统运行变慢、内存OOM,堆栈异常等问题,这里结合我之前的一些实践提供一些相关工具,和大家一起分享我们的诊断思路和解决技巧。
前面提到了虚拟内存需要映射物理内存才能使用,这个映射关系被保存在内存中的页表(Page Table)。现代 CPU 架构中一般有 TLB (Translation Lookaside Buffer,翻译后备缓冲,也称为页表寄存器缓冲)存在,在里面保存了经常使用的页表映射项。TLB 的大小有限,一般 TLB 如果只能容纳小于 100 个页表映射项。 我们能让程序的虚拟内存对应的页表映射项都处于 TLB 中,那么能大大提升程序性能,这就要尽量减少页表映射项的个数:页表项个数 = 程序所需内存大小 / 页大小。我们要么缩小程序所需内存,要么增大页大小。我们一般会考虑增加页大小,这就大页分配的由来,JVM 对于堆内存分配也支持大页分配,用于优化大堆内存的分配。那么 Linux 环境中有哪些大页分配的方式呢?
在高并发下,Java程序的GC问题属于很典型的一类问题,带来的影响往往会被进一步放大。不管是「GC频率过快」还是「GC耗时太长」,由于GC期间都存在Stop The World问题,因此很容易导致服务超时,引发性能问题。
在SpringBoot的Web项目中,默认采用的是内置Tomcat,当然也可以配置支持内置的jetty,内置有什么好处呢?
随着系统自身数据量的增长,访问量增加,系统的响应通常会越来越慢,或者是新的功能在性能上无法满足修去,这个时候需要对系统进行性能调优。调优是一个复杂的过程,涉及的方面有:硬件,操作系统,运行环境软件和应用本身。
在SpringBoot的Web项目中,默认采用的是内置Tomcat,当然也可以配置支持内置的jetty,内置有什么好处呢? 1. 方便微服务部署。 2. 方便项目启动,不需要下载Tomcat或者Jetty
不同的 GC 堆大小动态伸缩有很大很大的差异(比如 ParallelGC 涉及 UseAdaptiveSizePolicy 启用的动态堆大小策略以及相关的 UsePSAdaptiveSurvivorSizePolicy、UseAdaptiveGenerationSizePolicyAtMinorCollection 等等等等的参数参与决定计算最新堆大小的方式以及时机),在这个系列以后的章节我们详细分析每个 GC 的时候再详细分析这些不同 GC 的动态伸缩策略。我们这里仅涉及大多数 GC 通用的堆大小伸缩涉及的参数:MinHeapFreeRatio 与 MaxHeapFreeRatio:
列出java进程, -q 只输出进程id -m 输出Java进程(主函数)的参数 -l 可以用于输出主函数的完整路径 -v可以显示传递给JVM的参数
云原生这么多微服务,当然需要一个诊断利器来排查问题。 Arthas 是阿里开源的 Java 诊断工具,深受开发者喜爱。在线排查问题,无需重启;动态跟踪 Java 代码;实时监控 JVM 状态。Arthas 支持 JDK 6+,支持 Linux/Mac/Windows,采用命令行交互模式,同时提供丰富的 Tab 自动补全功能,进一步方便进行问题的定位和诊断。
jdk在安装的时候会提供一些性能分析、故障诊断、JVM监控之类的工具,了解这些工具对我们分析JVM内存、JVM调优有一定的帮助,本篇文章来学习一下。
在linux环境下显示一个进程的信息大家可能一直都在使用ps命令,比如用以下命令来显示当前系统执行的java进程:
生产环境中直接排查 JVM 的话,最简单的做法就是使用 JDK 自带的 6 个非常实用的命令行工具来排查。它们分别是:jps、jstat、jinfo、jmap、jhat 和 jstack,它们都位于 JDK 的 bin 目录下,可以使用命令行工具直接运行,其目录如下图所示:
“ 给一个系统定位问题的时候,知识、经验是关键基础,数据是依据,工具是运用知识处理数据的手段。这里的数据包括:运行日志、异常堆栈、GC日志、线程快照(threaddump/javacore文件)、堆转储快照(heapdump/hprof文件)等。经常使用适当的虚拟机监控和分析的工具可以加快我们分析数据和定位解决问题的速度,但我们在学习工具前,也应当意识到工具永远都是知识技能的一层包装,没有什么工具是“秘密武器”,学会了就能包医百病”
原文地址:https://www.cnblogs.com/superfj/p/8667977.html
Java 19 中 Loom 终于 Preview 了,虚拟线程(VirtualThread)是我期待已久的特性,但是这里我们说的线程内存,并不是这种 虚拟线程,还是老的线程。其实新的虚拟线程,在线程内存结构上并没有啥变化,只是存储位置的变化,实际的负载线程(CarrierThread)还是老的线程。
JVM大家可能都知道是个什么玩意-Java虚拟机,但是到底是个什么鬼?相信即使工作3-5年的程序员可能也不大了解。
领取专属 10元无门槛券
手把手带您无忧上云