本文通过产品编码和订单流水号介绍一下序列号(Sequence)在crudapi中的应用。
通过上一篇文章 基于Vue和Quasar的前端SPA项目实战之布局菜单(三)的介绍,我们已经完成了布局菜单,本文主要介绍序列号功能的实现。
这么温柔可爱的面试官,应该不会为难我吧。嗯,应该是的,毕竟我这么帅气,面试可能就是走个过场。美女面试官是不是单身?毕竟程序员都不善交流,因为我也是单身,难道我的姻缘就在此注定。孩子的名字我都想好了。一冰!好名字。
在以前的项目中,最常见的两种主键类型是自增Id和UUID,在比较这两种ID之前首先要搞明白一个问题,就是为什么主键有序比无序查询效率要快,因为自增Id和UUID之间最大的不同点就在于有序性。
在实现分库分表的情况下,表会被分到多个数据库中,这时自增主键已无法保证自增主键的全局唯一。
说起ID,特性就是唯一,在人的世界里,ID就是身份证,是每个人的唯一的身份标识。在复杂的分布式系统中,往往也需要对大量的数据和消息进行唯一标识。举个例子,数据库的ID字段在单体的情况下可以使用自增来作为ID,但是对数据分库分表后一定需要一个唯一的ID来标识一条数据,这个ID就是分布式ID。对于分布式ID而言,也需要具备分布式系统的特点:高并发,高可用,高性能等特点。
发布优惠券的时候,每个店铺都可以发布优惠券,当用户抢购的时候,优惠券表中的id如果使用数据库的自增长ID会存在以下问题:
分布式系统中,全局唯一 ID 的生成是一个老生常谈但是非常重要的话题。随着技术的不断成熟,大家的分布式全局唯一 ID 设计与生成方案趋向于趋势递增的 ID,这篇文章将结合我们系统中的 ID 针对实际业务场景以及性能存储和可读性的考量以及优缺点取舍,进行深入分析。本文并不是为了分析出最好的 ID 生成器,而是分析设计 ID 生成器的时候需要考虑哪些,如何设计出最适合自己业务的 ID 生成器。
因为Oracle中的自增序列与MySQL数据库是不一样的,所以在这里记录一下Oracle的自增序列。
趋势递增:分布式ID用来标识数据的唯一性,往往会被用作主键或者是唯一索引。常用的MySQL InnoDB,使用的索引往往是BTree索引,自增的数据在插入时会有较高的效率。
前两天粉丝给我留言吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?能干活解决bug不就行了吗?那还得会多少种方法?”
在互联网业务中,很多场景需要全局唯一的ID,比如消息系统用一个ID标记唯一的消息,用一个唯一的ID标记一个系统对象等。这些业务场景需要有一个分布式ID生成器。
在业务开发中,大量场景需要唯一ID来进行标识:用户需要唯一身份标识、商品需要唯一标识、消息需要唯一标识、事件需要唯一标识等,都需要全局唯一ID,尤其是复杂的分布式业务场景中全局唯一ID更为重要。于是就会引申出分布式系统中唯一主键ID生成策略问题。
在Spring Boot中设计一个订单号生成系统,主要考虑到生成的订单号需要满足的几个要求:唯一性、可扩展性、以及可能的业务相关性。以下是几种常见的解决方案及相应的示例代码:
前两天公众号有个粉丝给我留言吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?能干活解决bug不就行了吗?那还得会多少种方法?”
🍁 作者:知识浅谈,CSDN签约讲师,CSDN原力作者,后端领域优质创作者,热爱分享创作 💒 公众号:知识浅谈 📌 擅长领域:后端全栈工程师、爬虫、ACM算法 🔥 联系方式vx:zsqtcc 她把分布式 ID 常见解决方案讲的真的透彻。 🤞这次都给他拿下🤞 为什么 分布式 ID 使用这么频繁呢? 这主要是因为大数据量,高并发使得单体数据库显得力不从心了。 正菜来了🛴🛴🛴 🍖基于sql数据库方案 🍕数据库主键自增 这种方式就比较简单直白了,就是通过关系型数据库的自增主键产生来唯一的 ID。
Snowflake 中文的意思为雪花,所以 Snowflake算法 常被称为 雪花算法,是 Twitter(现“X”)开源的分布式 ID 生成算法,是一种分布式主键ID生成的解决方案。
TiDB 从 v4.0 版本开始正式支持序列功能,而除了序列之外还有多种序列号生成方案,这些方案在没有对 TiDB 优化的时候一般会产生写入热点问题。本文将介绍如何应对写入热点问题高效运行序列号服务。
Mycat是一个开源的分布式数据库系统,是一个实现了MySQL协议的的Server,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生(Native)协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里;
关于我为什么写这篇文章是因为今天在做订单模块的时候,看到之前的PRD上描述的订单生成规则是由 年月日+用户id2位+企业id位 +四位自增长数。然后竟被我反驳的突然改成了精确时间+4位自增长数,于是我更失望了。
松哥最近工作中刚好用到这块内容,于是调研了市面上几种常见的全局 ID 生成策略,稍微做了一下对比,供小伙伴们参考。
分布式架构下,唯一序列号生成是我们在设计一个系统,尤其是数据库使用分库分表的时候常常会遇见的问题。当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。
在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?
Snowflake(雪花) 是一项服务,用于为 Twitter 内的对象(推文,直接消息,用户,集合,列表等)生成唯一的 ID。这些 IDs 是唯一的 64 位无符号整数,它们基于时间,而不是顺序的。完整的 ID 由时间戳,工作机器编号和序列号组成。当在 API 中使用 JSON 数据格式时,请务必始终使用 id_str 字段而不是 id,这一点很重要。这是由于处理JSON 的 Javascript 和其他语言计算大整数的方式造成的。如果你遇到 id 和 id_str 似乎不匹配的情况,这是因为你的环境已经解析了 id 整数,并在处理的过程中仔细分析了这个数字。
上两篇讲到了我们的系统在面临大并发读取的时候,采用了读写分离主从复制(数据库读写分离方案,实现高性能数据库集群)的方案去应对,后来又面临了大并发写入的时候,系统数据库采用了分库分表的方案(数据库分库分表方案,优化大量并发写入所带来的性能问题),通过垂直拆分以及水平拆分的方式,将数据分到多个库和多个表中去应对的,即现在是这样的一套分布式存储结构。
作者简介 丁宜人,10年java开发经验。携程技术中心基础业务研发部用户中心资深java工程师,负责携程账号的基础服务和相关框架组件研发。之前在惠普公司供职6年,负责消息中间件产品研发。 一、相关背景 分布式架构下,唯一序列号生成是我们在设计一个系统,尤其是数据库使用分库分表的时候常常会遇见的问题。当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。 在携程账号数据库迁移MySql过程中,我们对用户ID的生成方案进行了新的设计,要求能够支撑携程现有的新用户注册体量。 本文通过
分布式策略ID的主要应用在互联网网站、搜索引擎、社交媒体、在线购物、金融、大数据处理、日志场景中,这些应用需要支持大量的并发请求和用户访问,分布式ID策略可以通过请求分发到不同的服务器节点来做计算,以提高服务的响应速度和可用性。
在服务设计中,经常遇到的一个问题就是如何生成一个全局唯一的ID,例如订单号,流水号等。对于ID的要求主要有以下几点:
分布式策略ID的主要应用在互联网网站、搜索引擎、社交媒体、在线购物、金融、大数据处理、日志场景中,这些应用需要支持大量的并发请求和用户访问,分布式ID策略可以通过请求分发到不同的服务器节点来做计算,以提高服务的响应速度和可用性。 常见的分布式ID生成策略: ● UUID(Universally Unique Identifier) ● 雪花算法(Snowflake) ● Redis原子自增 ● 基于数据库的自增主键(有些数据库不支持自增主键) ● 取当前毫秒数 本文主要简单介绍下雪花ID算法(Snowflake)的Python语言的计算方法。
业务ID是我们理解、管理和操作业务实体的关键。通过业务ID,我们可以查询、更新和删除业务实体,也可以跟踪业务实体的状态和历史。
最近在项目中用了UUID的方式生成主键,一开始只是想把这种UUID的方式生成主键记录下来,在查阅资料的过程中,又有了一些新的认识和思考。
分库分表是非常常见针对单个数据表数据量过大的优化方式,它的核心思想是把一个大的数据表拆分成多个小的数据表,这个过程也叫(数据分片),它的本质其实有点类似于传统数据库中的分区表,比如mysql和oracle都支持分区表机制。
在上一篇中我们讲述了关于多线程并发,导致共享属性在内存不可见的问题。以及使用 volatile 关键字设置共享属性,使其在多线程并发中内存可见。
本文主要以讨论电商的订单编码规则为案例,其他类型的服务编号设计思路其实也是相似的。
数据切分后,原有的关系数据库中的主键约束在分布式条件下将无法使用,因此需要引入外部机制保证数据 唯一性标识,这种保证全局性的数据唯一标识的机制就是全局序列号(sequence),因此一般全局序列号用于分表情况
某个项目采用了数据库(MySQL)自增ID作为主要业务数据的主键。数据库自增ID使用简单,自动编号,速度快,而且是增量增长,按顺序存放,对于检索非常有利。
既然是服务于分布式系统,为多个服务提供ID服务,访问压力一定很大,所以需要保证高可用。
很多场景需要使用全局唯一ID,用来标识唯一一条消息,唯一一笔交易,唯一一个用户,唯一一张图片等等。 传统数据库表的自增主键是很简单的一种实现方式,前提是你没有分库,也没有分表,如果你分表了,id就会重复,失去唯一性:
首先说下我们为什么需要分布式 ID,以及分布式 ID 是用来解决什么问题的。当我们的项目还处于单体架构的时候,我们使用数据库的自增 ID 就可以解决很多数据标识问题。但是随着我们的业务发展我们的架构就会逐渐演变成分布式架构,那么这个时候再使用数据的自增 ID 就不行了,因为一个业务的数据可能会放在好几个数据库里面,此时我们就需要一个分布式 ID 用来标识一条数据,因此我们需要一个分布式 ID 的生成服务。那么分布式 ID 的服务有什么要求和挑战呢?
流水号是每个系统永远都绕不开的一个话题,如订单系统中的订单号,物流系统的运单号、银行系统的业务单号等等,不难发现这些单号虽然叫法不一样,但都有着一些相同的共性,那就是全局唯一性。除此之外,一个设计良好的流水号生成规则还应该包含如下特性:
Hibernate的核心就是对象关系映射: 加载映射文件的两种方式: 第一种:<mapping resource="com/bie/lesson02/crud/po/employee.hbm.
墨墨导读:为了达到标识的目的,许多应用程序需要生成唯一编号,比如:商品编号、交易流水号等。MySQL数据库同样能够支持这样的需求场景,AUTO_INCREMENT就是为MySQL实现序列的方式,它会自动生成序列编号。
NS4系列包括4个开源模块,分别是:ns4_frame 分布式服务框架(详情点击查看:开源|ns4_frame分布式服务框架开发指南)、ns4_gear_idgen ID生成器组件(NS4框架Demo示例)、ns4_gear_watchdog 监控系统组件(服务守护、应用性能监控、数据采集、自动化报警系统)和ns4_chatbot通讯组件。
每一次HTTP请求,数据库的事务的执行,我们追踪代码执行的过程中,需要一个唯一值和这些业务操作相关联,对于单机的系统,可以用数据库的自增ID或者时间戳加一个在本机递增值,即可实现唯一值。但在分布式,又该如何实现唯一性的ID
过去的项目开发中,我们常常选用的数据库是mysql,mysql以其体积小、速度快等优势,备受中小型项目的青睐。随着项目数据量的迅速增长,mysql已无法满足我们的项目需求,数据迁移迫在眉睫。经多方对比综合考虑,我们选择了tidb分布式数据库。但是数据迁移后我们遇到一个问题,之前mysql数据库中,我们采用的是自增id主键,可选用的tidb又对自增主键不是很友好,所以我们选用了另一种主键生成方式:Snowflake算法。
最近几年,我一直从事的是运营平台业务开发。每天,我们都需要处理大量的工单配置工作。为了生成工单号,我们建立了一张专用的数据库表,用于记录和生成工单号。每次创建工单时,我们会查询这张表,根据年份字段、月份字段和模块编码找到最大的自增序列号。随后,我们将自增序列号加一,与模块编码、年月序列号拼接以生成工单号,并将相关信息写入表中。这种方法一直使用得很顺利,因为工单配置的量并不是特别大,一直都没有出现问题。然而,最近我们为第三方提供了一个工单推送的接口,他们一次性推送了大量的工单,这导致不仅生成了许多重复工单号,而且还引起了接口性能方面的问题。因此,我们决定对工单号生成方式进行改进,本文我们将介绍下我们新的生成方法。
MMO游戏后台通常需要由大量服务器来共同承载海量玩家,虽然玩家可能分布在不同的游戏大区,但是他们可能会通过跨服等等方式进行各种交互。游戏中的角色,装备,物品等需要生成一个全局唯一ID标识,便于辨别不同玩家,不同装备,也方便定位外网问题。
在软件开发中,生成唯一ID是一项常见而重要的任务。唯一ID的生成不仅仅是为了标识数据记录,还可以应用于分布式系统、数据库主键、日志跟踪等场景。本文将介绍几种目前技术领域最常使用的唯一ID生成方法,并通过代码示例展示它们的实际应用。
业务量小于500W或数据容量小于2G的时候单独一个mysql即可提供服务,再大点的时候就进行读写分离也可以应付过来。但当主从同步也扛不住的时候就需要分表分库了,但分库分表后需要有一个唯一ID来标识一条数据,且这个唯一ID还必须有规则,能辅助我们解决分库分表的一些问题。
领取专属 10元无门槛券
手把手带您无忧上云