首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    动脉自旋标记(ASL)磁共振成像:基础物理、脉冲序列和建模

    动脉自旋标记(ASL)是一种非侵入性磁共振成像(MRI)技术,它使用内源性动脉血作为动态示踪剂来量化器官的组织灌注。血流灌注描述了一个器官中给定体积的组织向毛细血管床输送和交换的动脉血水量,单位是 mL/100g/min。ASL常用于人脑,灰质脑灌注为70mL/100g/min,白质为20mL/100g/min。由于其非侵入性,ASL现在被更广泛地应用于其他器官,包括肾脏、肝脏、外周肌肉、胰腺和心脏。由于ASL不需要外源性造影剂,随着时间的推移重复使用是安全的,因此可以用来追踪疾病进展或药物治疗引起的灌注变化。本文发表在Advances in Magnetic Resonance Technology and Applications中。

    05

    微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

    来源:机器之心本文约2000字,建议阅读5分钟OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。 DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。 然而现存的剪枝

    02

    微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

    机器之心专栏 作者: 陈天翼-微软西雅图-高级研究员 OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。 DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。 然而现

    01

    时间序列和白噪声

    1.什么是白噪声?  答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。 理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。 高斯白噪声的概念——."白"指功率谱恒定;高斯指幅度取各种值时的概率p (x)是高斯函数          高斯噪声——n维分布都服从高斯分布的噪声           高斯分布——也称正态分布,又称常态分布。对于随机变量X,记为N(μ,σ2),分别为高斯分布的期望和方差。当有确定值时,p   (x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。

    04
    领券