对于咱们远程维护者来说,不仅要做好服务器等硬件设备的监测,发现问题后,还需要第一时间处理故障,如果是在质保期内的服务器,咱们当然有义务第一时间为客户联系原厂的服务。
内容为慕课网的《高并发 高性能 高可用 MySQL 实战》视频的学习笔记内容和个人整理扩展之后的笔记,在快速视频学习一遍之后发现了许多需要补充的点,比如三次握手的连接和Mysql的内部交互流程等等,关于后续的章节也会整合多篇文章后续会陆续发布。
业务ID是我们理解、管理和操作业务实体的关键。通过业务ID,我们可以查询、更新和删除业务实体,也可以跟踪业务实体的状态和历史。
首先浏览器将输入的链接进行DNS解析,也就是将域名转换为IP地址的过程,得到了服务器具体的IP地址,才可以进行TCP链接以及数据的传输。 具体DNS解析的过程,浏览器首先检查自身的DNS缓存是否对于此域名有IP地址,chrome对于域名解析的缓存时间为60s,可以通过地址栏输入chrome://net-internals/#dns清除DNS缓存。若浏览器解析缓存未命中,则到操作系统中hosts文件检查域名与IP对应关系。若hosts文件未命中,则向本地域名服务器请求解析,本地域名服务器一般是运营商ISP提供的,一般是通过53端口发送UDP报文请求服务器解析DNS。若本地服务器解析未命中则会有两种解析方案:迭代解析与递归解析,一般来说,主机向本地域名服务器的查询一般都是采用递归查询,本地域名服务器向根域名服务器的查询通常是采用迭代查询,依次向根域名服务器、顶级域名服务器、主域名服务器等一级一级查询查询直到查询到IP地址。
上期已经更新了 33 问 33 答,那今天再来更新 33 问 33 答好了哈哈,这是整个系列的第八期了,也是计网系列的第二期,计网还有一期就更新完了。
coconut是一款应用缓存服务器,主要用于场景化的缓存服务。coconut目前提供了两种场景模式:全局序列号发生器、全局额度管理器,可成为分布式、集群化系统架构中高性能独立功能部件。
作用于学校内班委收作业截图,因为在手机上一张张的收照片、改文件名最后还要将所有同学的文件打包起来,对计算机不太敏感的班委们来说做起来会比较麻烦,就突发灵感外加闲来无事写了个自动收集照片并打包提供下载的系统。
其实实习面试的问题都差不多,八股+项目+算法,都必须要做好准备,只是说实习面试要求可能不会太严格,比如你实习的算法,即时没写出来,能说出大概的思路,其实也是能过的,秋招的话,可能没写出来算法,大概率就凉了。
在网络分析中,读懂TCP序列号和确认号在的变化趋势,可以帮助我们 学习TCP协议以及排查通讯故障,如通过查看序列号和确认号可以确定数据传输是否乱序。但我在查阅了当前很多资料后发现,它们大多只简单介绍了TCP通讯 的过程,并没有对序列号和确认号进行详细介绍,结合实例的讲解就更没有了。近段时间由于工作的原因,需要对TCP的序列号和确认号进行深入学习,下面便是 我学习后的一些知识点总结,希望对TCP序列号和确认号感兴趣的朋友有一定帮助。
背景 我们经常遇到这样一个场景:在用户现场通过端口镜像方式对流量做镜像,用来分析数据包或者审计的时候,疑心较大的用户总是怀疑其数据会被篡改或客户端信任的结果并非真实服务器返回的值。我想大多数的技术兄弟可能都会和我一样回复用户:这是一台审计设备,是旁路部署,只能审计,不是串在里面的,不可能对数据进行篡改;也不可能影响客户端的最终请求响应的结果。这个理论我一直深信不疑,直到前段时间在分析DNS污染的时候才发现这句话并不完全对,难道旁路监听的设备可以用来进行攻击,并影响客户端请求最终的响应结果。的确可以!下面我们
浏览器做的第一步就是会解析URL得到里面的参数,分析域名是否规范,并将域名和需要的请求的资源分离开来,从而了解需要请求的是哪个服务器,请求的是服务器上的什么资源等等
很多同学就好奇得物的面试难度如何?其实都都大厂差不多,围绕八股+项目+算法这三个方面来考察。
条码应用分析条码标识与实物一起流转,便于实物跟踪;通过扫描条码,做到快速录入,降低录入时间,减少录入失误;借助于移动设备,可以实时采集条码信息,并在信息系统中完成相应的操作。
从输入URL到页面加载完成,发生了一系列复杂的步骤,涉及到浏览器、DNS服务器、Web服务器等多个组件的协同工作。下面是详细的过程:
尊嘟假嘟?果然评论区抱着怀疑态度的牛友发问了:“两三个月实习顶多存两三万吧 ?武理奖学金十几万?”于是赛文回复到:“还有学校补贴和导师横向,实习了半年多,存了五六万吧。”
在之前的内容中,我们已经详细讲解了TCP面试中最常见的问题,如三次握手和四次挥手等。而今天,我们将继续深入探讨TCP协议的其他方面,比如序列号和TCP Fast Open(TFO)等重要细节问题。这些内容将为你在面试中提供更全面的知识储备。
在前面的第二篇讲过一个通信的流程,里面提到了三种应用,HTTP、DNS、以及DHCP,这些呢,都是属于应用层的应用程序,正式因为越来越多的应用程序的出现,丰富了整个网络世界,对于学习路由交换数通技术来说,应用程序不是重点,特别对于新手来说,了解下常见的协议以及常见端口号的即可。而对于传输层来说,把TCP、UDP的特点、工作流程掌握,有个一定的认知,否则讲解的越多,对初学者来说会吸收不了,犯迷糊,建议是后续在随着知识点深入后,在回过头把TCP/IP协议框架看一次,你会发现又不一样的体会跟收获。
传输控制协议 (TCP) 是一种传输协议,用于在 IP 之上确保数据包的可靠传输。
TCP全称为Transmission Control Protocol(传输控制协议),是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP也是全双工通信协议,表示客户端可以给服务端发送消息,服务端也可以向客户端发送消息。
OSI 七层从下往上依次是:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。
TCP/IP 传输协议的 TCP 层是面向连接的。面向连接意味着,在传输任何数据之前,必须获得并确认可靠的连接。
tcp 和 udp 是 OSI 模型中的传输层中的协议。tcp 提供可靠的通信传输,而 udp 则常被用于让广播和细节控制交给应用的通信传输。两者的区别大致如下:
在计算机网络的基本概念中,分层次的体系结构是最基本的。计算机网络体系结构的抽象概念较多,在学习时要多思考。这些概念对后面的学习很有帮助。
一、需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单:selec
百科对重放攻击的描述:https://zh.wikipedia.org/wiki/%E9%87%8D%E6%94%BE%E6%94%BB%E5%87%BB
TCP三次握手是浏览器和服务器建立连接的方式,目的是为了使二者能够建立连接,便于后续的数据交互传输。 第一次握手:浏览器向服务器发起建立连接的请求 第二次握手:服务器告诉浏览器,我同意你的连接请求,同时我也向你发起建立连接的请求 第三次握手:浏览器也告诉服务器,我同意建立连接。 至此,双方都知道对方同意建立连接,并准备好了进行数据传输,也知道对方知道自己的情况。接下来就可以传输数据了
Java是 Internet 上的语言,它从语言级上提供了对网络应用程序的支持,程序员能够很容易开发常见的网络应用程序。
摘要 幂等概念来自数学,表示N次变换和1次变换的结果是相同的。这里讨论在某些场景下,客户端在调用服务没有达到预期结果时,会进行多次调用,为避免多次重复的调用对服务资源产生副作用,服务提供者会承诺满足幂等。HTTP/1.1中对幂等性的定义是:一次和多次请求某一个资源对于资源本身应该具有同样的副作用(网络超时等问题除外)。也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同。
浏览器接收url开启网络请求线程,URL包括以下部分 protocol:协议头https host:主机域名www.taobao.com port:端口号(默认) path:无 query:无 fragment:无 https协议 https协议是基于http协议开发的,是比http更安全的协议,在http协议的基础上增加了SSL/TLS加密
Python编写渗透工具学习笔记二 0x05编写脚本劫持tcp会话 主要是通过还原一个真实的攻击案例来进行学习,这个案例是Mitnick(下面用A来表示)闯入shimomura(下面用B来表示)的家用电脑系统。 主要用到的技术:SYN泛洪攻击和tcp序列号预测技术 情景 A要劫持B的一个tcp会话,B的电脑和某台服务器之间有可信协议。 主要做三点 使服务器无法做出响应 伪造来自服务器的一个连接 盲目伪造一个tcp三次握手的适当说明 01 使用scapy制造syn泛洪攻击 简单介绍: SYN泛洪攻击(SYN
银行的技术大多数都是 Java,但是我看银行后端开发和测开岗位的要求:熟悉Java/C++中至少一门编程语言。
区域文件是名称服务器存储其所知道的域名的信息的方式。名称服务器知道的每个域名都存储在区域文件中。对于名称服务器来说,大多数请求都不能在它自己服务器中找到区域文件。
一般我们会认为,要确认互联网上的任意两台主机设备是否建立TCP连接通讯,其实并不容易——攻击者如果不在双方的通讯路径中,就更是如此了。另外如果攻击者并不在通讯路径中,要中途中断双方的这种连接,甚至是篡改连接,理论上也是不大可能的。 不过来自加州大学河滨分校,以及美国陆军研究实验室的研究人员,最近联合发表了一篇论文,题为《Off-Path TCP Exploits: Global Rate Limite Considered Dangerous》。 这篇文章提到Linux服务器的TCP连接实施方案存在高危安全
当我们浏览网页、发送电子邮件或者进行在线游戏时,我们常常不会想到背后复杂的网络连接过程。然而,正是这些看似不起眼的步骤,确保了我们与服务器之间的稳定通信。其中最重要的步骤之一就是TCP连接的建立,而其中的核心环节就是三次握手。
Ping程序的目的是为了测试另一台主机是否可达。该程序发送一份ICMP回显请求报文给主机,并等待返回ICMP回显应答。
对于IM系统来说,如何做到IM聊天消息离线差异拉取(差异拉取是为了节省流量)、消息多端同步、消息顺序保证等,是典型的IM技术难点。
TCP建立连接需要三次握手,分手需要四次握手,平时在网上看到很多次,但是还没有很理解。为什么分手要多一次?可能是刚开始追求女生的时候比较容易,到分手的时候就比较麻烦了吧。。。了解某个东西要从它的基础开始,我们先看看TCP的报文是怎么回事。
序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。
A:中心管理端口8080,终端部署端口80,中心远程端口5901,终端远程端口5500,本地数据库端口3306。
TCP 协议中,在发送数据的准备阶段,客户端与服务器之间的三次交互,以保 证连接的可靠。
TCP协议目的是为了保证数据能在两端准确连续的流动,可以想象两个建立起TCP通道的设备就如同接起了一根水管,数据就是水管中的水由一头流向另一头。然而TCP为了能让一个设备连接多根“水管”,让一个设备能同时与多个设备交互信息,它必须要保证不同水管之间不会产生串联或相互影响,一根水管中的水绝不能流入另一根水管,要保证这样的效果,TCP协议使用socket数据结构来实现不同设备之间的连接。
TCP是面向连接的(只能一对一)、可靠的(确保每一个报文都能到达接收端)、基于字节流(保证字节的有序性,自动去除重复字节)的传输层通信协议。
三次握手的目的是确保两端的序列号同步,并且双方都可以发送和接收数据。如果第一次握手失败,客户端会重复发送SYN包;如果第二次握手失败,服务器也会重复发送SYN+ACK包;如果第三次握手失败,客户端会重新发送ACK包。
在进入本篇文章正题之前,需要先了解一下关于TCP连接过程中使用的关键字含义。 序列号seq:标记数据段的顺序。 TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生; 给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。 确认号ack:期待收到对方下一个报文段的第一个数据字节的序号; 序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。 同步SYN:连接建立时用于同步序号。 当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。 SYN=1表示这是一个连接请求,或连接接受报文。 SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。 确认ACK:仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效。 终止FIN:表示释放一个连接。FIN=1,则表示发送方的报文段数据已经发送完毕,并请求断开连接。
领取专属 10元无门槛券
手把手带您无忧上云