首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于神经标签搜索,中科院&微软亚研零样本多语言抽取式摘要入选ACL 2022

来源:机器之心本文约2500字,建议阅读5分钟本文介绍了基于神经标签搜索情况下,中科院和微软亚研的实验进展。 这项研究旨在解决零样本下法语、德语、西班牙语、俄语和土耳其语等多语种的抽取式摘要任务,并在多语言摘要数据集 MLSUM 上大幅提升了基线模型的分数。 抽取式文本摘要目前在英文上已经取得了很好的性能,这主要得益于大规模预训练语言模型和丰富的标注语料。但是对于其他小语种语言,目前很难得到大规模的标注数据。 中国科学院信息工程研究所和微软亚洲研究院联合提出一种是基于 Zero-Shot 的多语言抽取式文本

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于神经标签搜索,中科院&微软亚研零样本多语言抽取式摘要入选ACL 2022

    机器之心专栏 机器之心编辑部 这项研究旨在解决零样本下法语、德语、西班牙语、俄语和土耳其语等多语种的抽取式摘要任务,并在多语言摘要数据集 MLSUM 上大幅提升了基线模型的分数。 抽取式文本摘要目前在英文上已经取得了很好的性能,这主要得益于大规模预训练语言模型和丰富的标注语料。但是对于其他小语种语言,目前很难得到大规模的标注数据。 中国科学院信息工程研究所和微软亚洲研究院联合提出一种是基于 Zero-Shot 的多语言抽取式文本摘要模型。具体方法是使用在英文上预训练好的抽取式文本摘要模型来在其他低资源语言上

    02

    【nlp入门了解】自然语言处理—关系抽取

    信息抽取在自然语言处理中是一个很重要的工作,特别在当今信息爆炸的背景下,显得格外的重要。从海量的非结构化的文本中抽取出有用的信息,并结构化成下游工作可用的格式,这是信息抽取的存在意义。信息抽取又可分为实体抽取或称命名实体识别,关系抽取以及事件抽取等。命名实体对应真实世界的实体,一般表现为一个词或一个短语,比如曹操,阿里巴巴,中国,仙人掌等等。关系则刻画两个或多个命名实体的关系。比如马致远是《天净沙 · 秋思》的作者,那么马致远与《天净沙 · 秋思》的关系即是“创作”(author_of )关系,邓小平是党员,那么邓小平与共.产.党则“所属”(member_of)关系。

    01

    快递单信息抽取【三】--五条标注数据提高准确率,仅需五条标注样本,快速完成快递单信息任务

    相关文章: 1.快递单中抽取关键信息【一】----基于BiGRU+CR+预训练的词向量优化 2.快递单信息抽取【二】基于ERNIE1.0至ErnieGram + CRF预训练模型 3.快递单信息抽取【三】–五条标注数据提高准确率,仅需五条标注样本,快速完成快递单信息任务 1)PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练 2)PaddleNLP–UIE(二)–小样本快速提升性能(含doccona标注) !强烈推荐:数据标注平台doccano----简介、安装、使用、踩坑记录

    01

    深度学习知识抽取:属性词、品牌词、物品词

    更具体的任务有,在解析一段工作经历长文本的时候,我们希望提取其中的动宾组合来表示该应聘者之于此段工作经历的主要工作内容。以“ 了解市场情况 , 进行一些项目的商务谈判 ”为例,HanLP分词器的结果为“ 了解市场情况 , 进行一些项目的商务谈判 ”,此时可以提取的粗动宾组合有“了解- 情况 ”和“ 进行 - 谈判 ”,而我们更希望得到更加完整且意义更加丰富的宾语,因此需要将“市场 情况”合并为“市场情况”,将“商务 谈判”合并为“商务谈判”。因此,我们需要一个能够准确提取名词短语(Noun Pharse)的序列标注模型来克服NP字典召回不足的问题。

    02

    【技术白皮书】第三章 - 2 :关系抽取的方法

    由于传统机器学习的关系抽取方法选择的特征向量依赖于人工完成,也需要大量领域专业知识,而深度学习的关系抽取方法通过训练大量数据自动获得模型,不需要人工提取特征。2006年Hinton 等人(《Reducing the dimensionality of data with neural networks》)首次正式提出深度学习的概念。深度学习经过多年的发展,逐渐被研究者应用在实体关系抽取方面。目前,研究者大多对基于有监督和远程监督2种深度学习的关系抽取方法进行深入研究。此外,预训练模型Bert(bidirectional encoder representation from transformers)自2018年提出以来就备受关注,广泛应用于命名实体识别、关系抽取等多个领域。

    03

    工大SCIR | 文本摘要简述

    随着互联网产生的文本数据越来越多,文本信息过载问题日益严重,对各类文本进行一个“降 维”处理显得非常必要,文本摘要便是其中一个重要的手段。文本摘要旨在将文本或文本集合转换为包含关键信息的简短摘要。文本摘要按照输入类型可分为单文档摘要和多文档摘要。单文档摘要从给定的一个文档中生成摘要,多文档摘要从给定的一组主题相关的文档中生成摘要。按照输出类型可分为抽取式摘要和生成式摘要。抽取式摘要从源文档中抽取关键句和关键词组成摘要,摘要全部来源于原文。生成式摘要根据原文,允许生成新的词语、短语来组成摘要。按照有无监督数据可以分为有监督摘要和无监督摘要。本文主要关注单文档、有监督、抽取式、生成式摘要。

    01

    知识图谱研讨实录05丨肖仰华教授带你读懂概念图谱构建

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第五章课程《概念图谱构建》的16条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。 本课程

    01

    任务式对话中的自然语言理解

    导读:随着人工智能技术的发展,智能对话的应用场景越来越多,目前已经成为了研究的热点。天猫精灵,小度小度,腾讯叮当,这些智能助手都是智能对话在业界的应用。智能助手的对话方式可分为三种:任务式对话 ( 用户输入指令,智能助手执行指令任务 ),问答式对话 ( 用户输入问题,智能助手回复答案 ),闲聊式对话。那么智能助手如何理解用户的指令,最终完成指令任务呢?任务型语音对话的处理流程主要包括:语音识别,自然语言理解,对话管理、对话生成,语音合成 ( 图1 )。要理解用户的指令,就需要对用户输入进行自然语言理解,也就是对转换为文本的用户输入进行分析,得到用户的意图和关键信息。在图1中,这一部分由绿色虚线圈出,主要包括领域 ( domain )、意图 ( intent ) 和槽 ( slot ) 的预测。本文主要介绍这一部分,即领域识别、意图识别和槽抽取的主流方法和研究进展。

    04
    领券