时隔数月之后PaddleOCR发版v2.2,又带着新功能和大家见面了。本次更新,为大家带来最新的版面分析与表格识别技术:PP-Structure。核心功能点如下:
文档比对技术是一种用于比较两份文档之间差异的先进技术。具备较大的技术难点和场景价值。下面将对其技术难点和使用场景进行详细探讨。
今天跟大家分享一篇今天刚出的论文Symmetry-constrained Rectification Network for Scene Text Recognition,作者将文本的对称限制引入到文本校正网络中,显著提高了场景文本识别的精度。
导读:这篇文章前天发布过,但其中有部分表述不甚准确,今天已将内容纠正,重发一遍,后续会把前天发的文章删除,保留本文以供参考。
随着企业收集的非结构化数据不断增加,文本智能处理的价值和流行趋势也处于上升阶段。越来越多的企业意识到利用文本挖掘从企业文本资源库中提取知识和提升效率的重要性。 达观数据联合创始人桂洪冠,近日作为邀请嘉宾在年末亿欧四周年庆典上和各领域嘉宾一同探讨了文本挖掘在企业中的应用现状及未来前景展望。桂洪冠作为文本智能领域的处理专家,在大数据架构与核心算法以及文本挖掘等领域有深厚的积累和丰富的实战经验。 和我们熟悉的结构化数据不同,当提到文本数据时,常有以下几种特点: 1.数据无结构化 文档格式多样化,通常以PDF、
语音助手已经成为现代生活中不可或缺的一部分。人们可以通过语音助手进行各种操作,如查询天气、播放音乐、发送短信等。语音助手的核心技术是语音识别。本文将详细介绍语音识别的语音助手。
随着智能手机、智能音箱等智能设备的普及,语音搜索已经成为了一种趋势。语音搜索不仅方便快捷,而且可以实现双手的解放。语音搜索的实现离不开语音识别技术,本文将详细介绍语音识别的语音搜索。
AI(Artificial Intelligence)就是人工智能,它是研究人的智能的,并且进行模拟和延伸的新兴科学技术。
孙哲,携程资深算法工程师。长期从事自然语言相关工作,当前主要涉及内容化,对于内容挖掘和生成方面有相关的一些研究和探索。
1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。
在科学研究中,从方法论上来讲,都应先见森林,再见树木。当前,人工智能科技迅猛发展,万木争荣,更应系统梳理脉络。为此,我们特别精选国内外优秀的综述论文,开辟“综述”专栏,敬请关注。
前篇 一文了解自然语言处理的每个范畴用到的核心技术,难点和热点(1), 这部分涉及的NLP范畴包括: 中文分词 词性标注 句法分析 文本分类背景 下面介绍,文本分类常用的模型,信息检索,信息抽取。 8文本分类模型 近年来,文本分类模型研究层出不穷,特别是随着深度学习的发展,深度神经网络模型也在文本分类任务上取得了巨大进展。文本分类模型划分为以下三类: 基于规则的分类模型 基于规则的分类模型旨在建立一个规则集合来对数据类别进行判断。这些规则可以从训练样本里自动产生,也可以人工定义。给定一个测试样例,我们可以
本文介绍了OCR异构加速在腾讯云上的应用和优化,通过多FPGA芯片协同的异构加速架构和通用加速器引擎,实现了高性能、低成本的OCR识别。同时,平台支持业务模型的快速部署和迭代,为云端OCR服务提供了一种高效的解决方案。
在人工智能特别是深度学习的领域,编码器(Encoder)是一个至关重要的组件。编码器在处理文本、图像、音频等数据时发挥了核心作用。本文将详细介绍编码器的概念、工作原理以及其在人工智能大模型中的应用。
使用过hanlp的都知道hanlp中有许多词典,它们的格式都是非常相似的,形式都是文本文档,随时可以修改。本篇文章详细介绍了hanlp中的词典格式,以满足用户自定义的需要。
今天跟大家分享一篇昨天新出的场景文本识别方法MASTER,其发明了一种Multi-Aspect 全局上下文建模方法,有效改进了文本识别精度,在多个数据集上取得了目前最好的精度,是最近最值得读的文本识别方面的论文。
随着人工智能技术的不断发展,语音识别技术越来越成熟,语音技术的应用也越来越广泛。智能客服是其中一个应用领域,它通过语音识别技术,将用户的语音输入转换为文本,并通过自然语言处理技术,解决用户的问题。本文将详细介绍语音识别的智能客服。
近日,华东理工大学药学院上海市新药设计重点实验/华东师范大学人工智能新药创智中心李洪林/张凯团队在Briefings in Bioinformatics上发表题为Multi-Modal Chemical Information Reconstruction from Images and Texts for Exploring the Near-Drug Space的文章[1]。
希望时间的流逝不仅仅丰富了我们的阅历,更重要的是通过提炼让我们得以升华,走向卓越。 1电影Her见识NLP 可能很多朋友看过好莱坞的电影《Her》,电影中讲述的主角耳朵里戴了一个耳机,这是一个人工智能的虚拟助手,能够通过耳机与人工智能来对话。 人机交互方式在经历了第一代的键盘鼠标,第二代的触摸屏和按键后,第三代对话式人工智能操作系统正在来临,让用户通过最便捷、简单的方式获取信息和服务。 这其中功不可没的就是自然语言处理技术(NLP),我们熟知的问答系统就是一种最直接的人机交互方式。NLP过去经历了怎样的发
疫情之下,全球金融市场进入大波动时代,各国金融调控政策、突发事件层出不穷,例如美联储无限量QE、欧央行7500亿复苏基金、中美关闭使领馆、阿塞拜疆和亚美尼亚爆发空战...如何24*7小时全天候自动、智能监控全球新闻事件,从而最快速地做出反应、最大可能地规避风险?
随着人工智能的热度上升,图像识别这一细分领域也渐渐被人们所关注。在很多公司的业务中,有很多需要对图片进行识别的需求。为了帮助业务实现对这些图片、文档的识别和结构化,业界进行了一系列的实践和探索,最终确定了一些可行的方法。实践过程中,可能遇到过一系列问题和难点。本次直播分享,我们将结合目前的业务需求,说说爱奇艺在探索中遇到的痛点和难点以及识别技术中的一些细节。
在 Python 中,可以使用 Unicode 字符范围来匹配中文字符,其中中文字符的 Unicode 范围是 "\u4e00-\u9fff"。我们可以使用正则表达式模式来匹配中文字符,并提取出来。
朋友小君是一家创业公司老板,最近这段时间总是抱怨自己公司每天要处理的文件又多又杂,员工工作效率因此被拖慢了不少。
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,算法是实现任务的核心,因此深度学习必备算法的学习和理解是非常重要的。
数字经济快速发展的背后,全球数据总量呈现出爆发式增长趋势。智能文档处理(IDP)技术能够高效地从多格式文档中捕捉、提取和处理数据,帮助机构和企业大幅提升文档处理效率,节约时间和人力成本。近期,合合信息智能文字识别产品通过中国信息通信研究院(以下简称“中国信通院”)“可信AI—智能文档处理系统”评估工作,并获得“5级”评定。据悉,“5级”为该模块最高评定等级。
近年来,人工智能领域的两大重要模型——GPT(Generative Pre-trained Transformer)和BERT(Bidirectional Encoder Representations from Transformers)引起了广泛的关注。这两个模型在自然语言处理(NLP)领域表现出色,但它们在架构、训练方法和应用场景上有显著的差异。本文将深入探讨GPT和BERT的核心特点、技术原理以及各自的优缺点。
作者:邱陆陆 当手机取代了钱包,支付宝甚至比现金更常用,与蚂蚁金服的产品端一同忙碌起来的还有公司的服务端。95188 服务热线就是其中之一。 然而当我们谈起客服电话,想到的仍然是传统的按键菜单(「普通话服务请按 1,for English service please press 2」)和在机械而漫长的语音播报里等待的焦躁。「在过去的统计里,只要用户没转接人工,就算作『问题被自助解决了』,其实在我们看来那不叫『解决』,叫『损耗』。」蚂蚁金服的产品运营专家弈客说。秉承着这样的理念,团队开发了 MISA(Ma
11 月 5 日,在 Wave Summit+2019 深度学习开发者峰会上,飞桨全新发布和重要升级了最新的 21 项进展,在深度学习开发者社区引起了巨大的反响。
当前的资讯聚合时代,用户阅读新闻的习惯已经从网页端逐渐转向了手机App,而且越来越青睐新闻资讯类App的内容个性化推荐功能。新闻资讯的个性化阅读已经是大势所趋,这背后就有自然语言处理技术的帮助。
话不多说,直接上题 @酱番梨 问: 如何看待某手机品牌语音助手无法识别机主语音,误解锁操作? 按照现在的语音识别技术,出现这样的事正常吗? 来自社友的回答 ▼▼▼ @lyn 不管是语音识别还是
重构出版:语音交互技术的冲击与机遇 1 摘要:语音交互技术是人工智能技术的重要分支,包括语音识别、语音合成和语义理解三个部分。语音交互技术不仅从出版实务上重构了出版业,而且重构了出版业的核心概念。出版机构面对语音交互技术的冲击要主动培养音频编辑人才,提前布局市场,在下一次知识服务转型的风口占得先机。 关键词:人工智能;语音交互技术;重构;出版业 2 人工智能将对人类社会产生重大影响,而语音是人工智能技术重要应用领域之一。近年来语音交互技术日趋成熟,数字出版领域有声读物快速发展,市场不断扩大。“国内已经先
机器之心发布 机器之心编辑部 PaddleOCR 可称得上 OCR 方向目前最火的 repo。 OCR 方向的工程师,之前一定听说过 PaddleOCR 这个项目,累计 Star 数量已超过 20000+,频频登上 GitHub Trending 和 Paperswithcode 日榜月榜第一,在 Medium 与 Papers with Code 联合评选的《Top Trending Libraries of 2021》,从百万量级项目中脱颖而出,荣登 Top10!在《2021 中国开源年度报告》中被评
众所周知,人工神经网络(ANN)的设计思路是模仿人脑结构。但是直到10年前,ANN和人类大脑之间唯一的共同点是对实体的命名方式(例如神经元)。由于预测能力较弱并且实际应用的领域较少,这样的神经网络几乎毫无用处。
AI核心要研究的是如何让计算机去完成以往需要人的智力才能胜任的工作,而人的智能性核心体现在对不同事物的感知能力、推理能力、决策能力。因此要想做出AI产品就离不开对感知的研究,推理机制的研究以及智能决策方向的研究。对感知智能而言,AI已经做了很多突破,例如机器对听觉、视觉、触觉的感知能力,通过摄像头、麦克风或者其他的传感设备,借助语音识别、图像识别的一些算法模型,能够进行识别和理解。
OCR方向的工程师,之前一定听说过PaddleOCR这个项目,其主要推荐的PP-OCR算法更是被国内外企业开发者广泛应用,短短半年时间,累计Star数量已超过15k,频频登上Github Trending和Paperswithcode 日榜月榜第一,在《Github 2020数字洞察报告》中被评为中国Github Top20活跃项目,称它为 OCR方向目前最火的repo绝对不为过。
DeepAction八期飞跃计划还剩12个名额,联系小编,获取你的专属算法工程师学习计划(联系小编SIGAI_NO1)
自然语言处理技术的研究,可以丰富计算机知识处理的研究内容,推动人工智能技术的发展。
在当今信息爆炸的时代,社交媒体和新闻平台上涌现出大量的言论和舆情,对于企业、政府和个人而言,了解并适应这一庞大而复杂的信息流变得至关重要。自然语言处理(NLP)技术的崛起为舆情分析提供了一把智能的解锁大众情绪的钥匙。本文将深入剖析NLP在舆情分析中的关键技术、实际应用案例,以及未来的发展趋势和面临的挑战。
https://github.com/PaddlePaddle/PaddleOCR
第十四届视觉与学习青年学者研讨会(VALSE 2024)于5月5日-7日在山城重庆渝北区悦来国际会议中心举办。大会聚焦计算机视觉、模式识别、多媒体和机器学习等领域的国际前沿和热点方向。大会中,合合信息智能创新事业部研发总监常扬做了"文档解析与向量化技术加速多模态大模型训练与应用"专题汇报,主要讲解TextIn文档解析技术和高精度文本向量化模型的技术特征。下面为大家分享一下这次报告的主要内容。
“ 多大型多模态的评估标准MM-Vet 定义了 6 个核心 VL 功能:识别、OCR、知识、语言生成、空间感知和数学计算,并提出了一个基于 LLM 的开放式输出评估器,可以对不同的问题类型和答案风格进行评估,从而产生统一的评分指标。”
由于网络暴力往往处于灰色地带,大部分暴力行为都尚未构成诽谤和侮辱,因此很难对网络暴力实施者处以刑罚或者行政处罚。
关于物联网资产识别研究的话题,我们介绍了资产识别的研究现状、物联网设备的特征以及基于先验知识的资产标记实践(文章链接见往期回顾),通过对问题的分析和标记实践后得知,要想解决好互联网上物联网设备识别的问题,必定是采用人工与智能的结合。本文是物联网资产发现的终篇,主要介绍如何通过机器学习聚类和人工标记结合快速准确的发现网络空间内的物联网资产指纹以及具体的识别效果。
经过多年累计后,该项目 GitHub Star 数量已超过 20000+,并频频登上 GitHub Trending 和 Paperswithcode 日榜月榜第一。
导 读 OCR方向的工程师,之前一定听说过PaddleOCR这个项目, 累计Star数量已超过20000+, 频频登上GitHub Trending和Paperswithcode 日榜月榜第一, 在Medium与Papers with Code 联合评选的《Top Trending Libraries of 2021》,从百万量级项目中脱颖而出,荣登Top10! 在《2021中国开源年度报告》中被评为活跃度Top5! 称它为 OCR方向目前最火的repo绝对不为过。 PaddleOCR影响力 PP-OC
【每周一本书】之《Java自然语言处理》(附上期赠书活动获奖名单)
目前,人工智能技术在世界范围内热度极高,但却出现了“雷声大、雨点小”的现象。一方面,随着近年来深度学习技术的不断发展,计算能力的不断提高,更深更复杂网络的普及使用,加上深度学习端到端的特性,看起来好像人工智能就是端到端的标注,不断地做数据清洗,增加标注数据,加深模型参数,就可以实现计算机像人类一样工作。另一方面,人工智能在实际应用场景落地时经常失败,常听到有“只见人工,不见智能”,“有多少人工就有多少智能”的吐槽。因此,目前许多人工智能技术的实现现阶段还不能脱离人工经验。
大家好,今天开始和大家分享,我在自然语言处理(Natural Language Processing,NLP)的一些学习经验和心得体会。
领取专属 10元无门槛券
手把手带您无忧上云