首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

根据其他列值从DataFrame获取值(PySpark)

在PySpark中,可以使用filter()函数根据其他列的值从DataFrame中获取特定的值。

具体步骤如下:

  1. 导入必要的模块:from pyspark.sql import SparkSession from pyspark.sql.functions import col
  2. 创建SparkSession对象:spark = SparkSession.builder.getOrCreate()
  3. 创建一个示例DataFrame:data = [("Alice", 25, "Female"), ("Bob", 30, "Male"), ("Charlie", 35, "Male")] df = spark.createDataFrame(data, ["Name", "Age", "Gender"]) df.show()输出:+-------+---+------+ | Name|Age|Gender| +-------+---+------+ | Alice| 25|Female| | Bob| 30| Male| |Charlie| 35| Male| +-------+---+------+
  4. 使用filter()函数根据其他列的值获取特定的值:filtered_df = df.filter(col("Age") > 30) filtered_df.show()输出:+-------+---+------+ | Name|Age|Gender| +-------+---+------+ |Charlie| 35| Male| +-------+---+------+

在上述示例中,我们根据"Age"列的值大于30来过滤DataFrame,最终获取到满足条件的行。

推荐的腾讯云相关产品和产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PySpark SQL——SQL和pd.DataFrame的结合体

导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...1)创建DataFrame的方式主要有两大类: 其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 文件、数据库中读取创建...中的drop_duplicates函数功能完全一致 fillna:空填充 与pandas中fillna功能一致,根据特定规则对空进行填充,也可接收字典参数对各指定不同填充 fill:广义填充 drop...),第二个参数则为该取值,可以是常数也可以是根据已有进行某种运算得到,返回是一个调整了相应列后的新DataFrame # 根据age创建一个名为ageNew的新 df.withColumn('...基础上增加或修改一,并返回新的DataFrame(包括原有其他),适用于仅创建或修改单列;而select准确的讲是筛选新,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新,返回一个筛选新

10K20
  • 独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    最简单的方式是通过Anaconda使用Python,因其安装了足够的IDE包,并附带了其他重要的包。 1、下载Anaconda并安装PySpark 通过这个链接,你可以下载Anaconda。...第一步:你的电脑打开“Anaconda Prompt”终端。 第二步:在Anaconda Prompt终端中输入“conda install pyspark”并回车来安装PySpark包。...3.1、Spark数据源开始 DataFrame可以通过读txt,csv,json和parquet文件格式来创建。...and logical dataframe.explain(4) 8、“GroupBy”操作 通过GroupBy()函数,将数据根据指定函数进行聚合。...10、缺失和替换 对每个数据集,经常需要在数据预处理阶段将已存在的替换,丢弃不必要的,并填充缺失pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。

    13.6K21

    大数据开发!Pandas转spark无痛指南!⛵

    图解数据分析:入门到精通系列教程图解大数据技术:入门到精通系列教程图解机器学习算法:入门到精通系列教程数据科学工具库速查表 | Spark RDD 速查表数据科学工具库速查表 | Spark SQL...的 Pandas 语法如下:df = pd.DataFrame(data=data, columns=columns)# 查看头2行df.head(2) PySpark创建DataFramePySpark...条件选择 PandasPandas 中根据特定条件过滤数据/选择数据的语法如下:# First methodflt = (df['salary'] >= 90_000) & (df['state'] =...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一进行统计计算的方法,可以轻松对下列统计进行统计计算:元素的计数列元素的平均值最大最小标准差三个分位数...:25%、50% 和 75%Pandas 和 PySpark 计算这些统计的方法很类似,如下: Pandas & PySparkdf.summary()#或者df.describe() 数据分组聚合统计

    8.1K71

    PySpark ML——分布式机器学习库

    sklearn的关系是:spark.ml库支持大部分机器学习算法和接口功能,虽远不如sklearn功能全面,但主要面向分布式训练,针对大数据;而sklearn是单点机器学习算法库,支持几乎所有主流的机器学习算法,样例数据...所以在实际应用中,可综合根据数据体量大小和具体机器学习算法决定采用哪个框架。...; DataFrame增加DataFrame是不可变对象,所以在实际各类transformer处理过程中,处理的逻辑是在输入对象的基础上增加新的方式产生新对象,所以多数接口需指定inputCol和...outCol参数,理解这一过程会更有助于学习ml处理和训练流程; 算法与模型:个人认为这是spark.ml中比较好的一个细节,即严格区分算法和模型的定义边界,而这在其他框架或大多数学习者的认知中是一个模糊的概念...选取球员各项能力数据,对PES中球员星级(取值为1-5,多分类任务)进行预测,训练集和测试集比例为7:3。两个库中模型参数均采用相同参数(训练100棵最大深度为5的决策树,构建随机森林)。

    1.6K20

    PySpark |ML(转换器)

    引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...根据之前我们叙述过的DataFrame的性能要远远好于RDD,并且MLlib已经不再被维护了,所以在本专栏中我们将不会讲解MLlib。...02 转换器 在PySpark中,我们通常通过将一个新附加到DataFrame来转换数据。 Binarizer() 用处:根据指定的阈值将连续变量转换为对应的二进制。...+--------+------------+ |ASD VA c|[asd, va, c]| +--------+------------+ VectorSlicer() 用处:给定一个索引列表,特征向量中提取值...-1.1,-3.0,4.5,3.3]|[-1.1,3.3]| +-----------------------+----------+ VectorAssembler() 用处:将多个数字(包括向量)合并为一向量

    11.7K20

    PySparkDataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...--- 一种方式通过functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]的所有:** **修改的类型(类型投射):** 修改列名 --- 2.3 过滤数据---...max(*cols) —— 计算每组中一或多的最大 mean(*cols) —— 计算每组中一或多的平均值 min(*cols) —— 计算每组中一或多的最小...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加,只能通过合并进行; pandas比Pyspark...的DataFrame处理方法:增删改差 Spark-SQL之DataFrame操作大全 Complete Guide on DataFrame Operations in PySpark

    30.4K10

    Spark Extracting,transforming,selecting features

    ; 转换:缩放、转换、修改特征; 选择:大的特征集合中选择一个子集; 局部敏感哈希:这一类的算法组合了其他算法在特征转换部分(LSH最根本的作用是处理海量高维数据的最近邻,也就是相似度问题,它使得相似度很高的数据以较高的概率映射为同一个...设置参数maxCategories; 基于的唯一数量判断哪些需要进行类别索引化,最多有maxCategories个特征被处理; 每个特征索引0开始; 索引类别特征并转换原特征为索引; 下面例子...,输出一个单向量,该包含输入列的每个所有组合的乘积; 例如,如果你有2个向量,每一个都是3维,那么你将得到一个9维(3*3的排列组合)的向量作为输出列; 假设我们有下列包含vec1和vec2两的...使其用于一致的标准差或者均值为0; 注意:如果一个特征的标准差是0,那么该特征处理后返回的就是默认0; from pyspark.ml.feature import StandardScaler dataFrame...8 [0.0, 1.0, 12.0, 0.0] 0.0 9 [1.0, 0.0, 15.0, 0.1] 0.0 如果我们使用ChiSqSelector,指定numTopFeatures=1,根据标签

    21.8K41

    PySpark UD(A)F 的高效使用

    举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔is_sold,想要过滤带有sold产品的行。...如果工作流 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...这意味着在UDF中将这些转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...DataFrame的转换 from pyspark.sql.types import MapType, StructType, ArrayType, StructField from pyspark.sql.functions...如果的 UDF 删除或添加具有复杂数据类型的其他,则必须相应地更改 cols_out。

    19.6K31

    3万字长文,PySpark入门级学习教程,框架思维

    下面我将会相对宏观的层面介绍一下PySpark,让我们对于这个神器有一个框架性的认识,知道它能干什么,知道去哪里寻找问题解答,争取看完这篇文章可以让我们更加丝滑地入门PySpark。...# 根据某几列进行聚合,如有多用列表写在一起,如 df.groupBy(["sex", "age"]) df.groupBy("sex").agg(F.min(df.age).alias("最小年龄...DataFrame操作APIs 这里主要针对的是进行操作,比如说重命名、排序、空判断、类型判断等,这里就不展开写demo了,看看语法应该大家都懂了。...假如某个节点挂掉,节点的内存或磁盘中的持久化数据丢失了,那么后续对RDD计算时还可以使用该数据在其他节点上的副本。如果没有副本的话,就只能将这些数据源头处重新计算一遍了。一般也不推荐使用。 2....num-executors x executor-memory 是不能超过2000G的,但是也不要太接近这个,不然的话集群其他同事就没法正常跑数据了,一般我们设置4G-8G。

    9.3K21

    PySpark入门】手把手实现PySpark机器学习项目-回归算法

    如果有兴趣和笔者一步步实现项目,可以先根据上一篇文章的介绍中安装PySpark,并在网站中下载数据。...select方法将显示所选的结果。我们还可以通过提供用逗号分隔的列名,数据框架中选择多个。...中成功的添加了一个转化后的“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的;我们还必须为为features和label指定名称...建立机器学习模型 在应用RFormula和转换Dataframe之后,我们现在需要根据这些数据开发机器学习模型。我想为这个任务应用一个随机森林回归。

    8.1K51

    独家 | 一文读懂PySpark数据框(附实例)

    它还可以HDFS或本地文件系统中加载数据。 创建数据框 让我们继续这个PySpark数据框教程去了解怎样创建数据框。...CSV文件中读取数据 让我们从一个CSV文件中加载数据。这里我们会用到spark.read.csv方法来将数据加载到一个DataFrame对象(fifa_df)中。...这个方法将返回给我们这个数据框对象中的不同的信息,包括每的数据类型和其可为空的限制条件。 3. 列名和个数(行和) 当我们想看一下这个数据框对象的各列名、行数或数时,我们用以下方法: 4....查询多 如果我们要从数据框中查询多个指定,我们可以用select方法。 6. 查询不重复的多组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。...原文标题:PySpark DataFrame Tutorial: Introduction to DataFrames 原文链接:https://dzone.com/articles/pyspark-dataframe-tutorial-introduction-to-datafra

    6K10

    手把手教你实现PySpark机器学习项目——回归算法

    如果有兴趣和笔者一步步实现项目,可以先根据上一篇文章的介绍中安装PySpark,并在网站中下载数据。...我们还可以通过提供用逗号分隔的列名,数据框架中选择多个。...中成功的添加了一个转化后的“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的;我们还必须为为features和label指定名称...建立机器学习模型 在应用RFormula和转换Dataframe之后,我们现在需要根据这些数据开发机器学习模型。我想为这个任务应用一个随机森林回归。

    4.1K10

    手把手实现PySpark机器学习项目-回归算法

    如果有兴趣和笔者一步步实现项目,可以先根据上一篇文章的介绍中安装PySpark,并在网站中下载数据。...select方法将显示所选的结果。我们还可以通过提供用逗号分隔的列名,数据框架中选择多个。...中成功的添加了一个转化后的“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的;我们还必须为为features和label指定名称...建立机器学习模型 在应用RFormula和转换Dataframe之后,我们现在需要根据这些数据开发机器学习模型。我想为这个任务应用一个随机森林回归。

    8.5K70
    领券