首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

精通 Pandas 探索性分析:1~4 全

我们还将学习 Pandas 的filter方法以及如何在实际数据集中使用它,以及基于将根据数据创建的布尔序列保护数据的方法。 我们还将学习如何将条件直接传递给数据帧进行数据过滤。.../img/42d7fec2-58a2-4661-9ec6-3d81ca8f6421.png)] 检查子串 为了学习如何使用字符串方法检查 Pandas 序列的子字符串,我们使用str包中的contains...在这里,我们从数据集中调用RegionName序列上的str.contains方法。 我们正在寻找包含New子字符串的记录。...它打印出一个布尔序列,打印True找到一个子字符串,而False找到一个子字符串: data.RegionName.str.contains('New').head() 输出如下: [外链图片转存失败...我们了解了 Pandas 的filter方法以及如何在实际数据集中使用它。 我们还学习了根据从数据创建的布尔序列过滤数据的方法,并且学习了如何将过滤数据的条件直接传递给数据帧。

29.9K10

Pandas 秘籍:1~5

如果传递了字符串,它将返回一维序列。 如果将列表传递给索引运算符,它将以指定顺序返回列表中所有列的数据帧。 步骤 2 显示了如何选择单个列作为数据帧而不是序列。...最常见的是,使用字符串选择单个列,从而得到一个序列。 当数据帧是所需的输出时,只需将列名放在一个单元素列表中。 更多 在索引运算符内部传递长列表可能会导致可读性问题。...通过名称选择列是 Pandas 数据帧的索引运算符的默认行为。 步骤 3 根据类型(离散或连续)以及它们的数据相似程度,将所有列名称整齐地组织到单独的列表中。...例如,当在describe数据帧方法中使用include参数时,可以传递形式对象 NumPy / pandas 对象或其等效字符串表示形式的列表。...除空字符串外,所有字符串均为True。 所有非空集,元组,字典和列表都是True。 空的数据帧或序列不会求值为True或False,而是会引发错误。

39.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分析你的个人Netflix数据

    将字符串转换为Pandas中的Datetime和Timedelta 我们两个时间相关列中的数据看起来确实正确,但是这些数据实际存储的格式是什么?...我们可以用df.dtypes快速获取数据框中每列的数据类型列表,执行: df.dtypes ? 正如我们在这里看到的,这三列都存储为object,这意味着它们是字符串。...我们使用str.contains(),给出两个参数: “Friends”,这是我们用来挑选Friends片段的子字符串。 regex=False,它告诉函数前一个参数是字符串而不是正则表达式。...因此,让我们进一步过滤friends数据帧,将Duration限制大于1分钟。这将有效地计算观看部分剧集的时间,同时过滤掉那些短的、不可避免的“预览”视图。...为此,我们需要完成以下几个步骤: 告诉pandas我们要用哪一天的顺序pd.Categorical-默认情况下,它会根据每天观看的剧集数量按降序绘制,但在查看图表时,按周一到周日的顺序查看数据会更直观。

    1.9K50

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...1.0.0rc0 使用 DataFrame.info 更好地自动汇总数据帧 我最喜欢的新功能是改进后的 DataFrame.info (http://dataframe.info/) 方法。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...不过最值得注意的是,从 DataFrameGroupBy 对象中选择列时,输入 key 列表或 key 元组的方法已被弃用。现在要用 item 列表,而非键列表。

    3.9K10

    盘一盘 Python 系列 - Cufflinks (下)

    -- dash:字典、列表或字符串格式,用于设置轨迹风格 字典:{column:value} 按数据帧中的列标签设置风格 列表:[value] 对每条轨迹按顺序的设置风格 字符串:具体风格的名称,适用于所有轨迹...keys:列表格式,指定数据帧中的一组列标签用于排序。 bestfit:布尔或列表格式,用于拟合数据。...字典:{column:color} 按数据帧中的列标签设置颜色 列表:[color] 对每条轨迹按顺序的设置颜色 ---- categories:字符串格式,数据帧中用于区分类别的列标签 x:字符串格式...,数据帧中用于 x 轴变量的列标签 y:字符串格式,数据帧中用于 y 轴变量的列标签 z:字符串格式,数据帧中用于 z 轴变量的列标签 (只适用 3D 图) text:字符串格式,数据帧用于显示文字的列标签...secondary_y:字符串格式,数据帧中用于第二个 y 轴变量的列标签 secondary_y_title:字符串格式,用于设置第二个 y 轴标题 subplots:布尔格式,如果 True 则画子图

    5K10

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...1.0.0rc0 使用 DataFrame.info 更好地自动汇总数据帧 我最喜欢的新功能是改进后的 DataFrame.info (http://dataframe.info/) 方法。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...不过最值得注意的是,从 DataFrameGroupBy 对象中选择列时,输入 key 列表或 key 元组的方法已被弃用。现在要用 item 列表,而非键列表。

    2.4K20

    50个Pandas的奇淫技巧:向量化字符串,玩转文本处理

    一、向量化操作的概述 对于文本数据的处理(清洗),是现实工作中的数据时不可或缺的功能,在这一节中,我们将介绍Pandas的字符串操作。...三、向量化的正则表达式 Pandas的字符串方法根据Python标准库的re模块实现了正则表达式,下面将介绍Pandas的str属性内置的正则表达式相关方法 方法 说明 match() 对每个元素调用re.match...str.slice()方法用于从Pandas系列对象中存在的字符串中分割子字符串。...单列、双列、多列 1)基本用法 Series.str.cat(others=None, sep=None, na_rep=None, join='left') 2)参数解释 others:系列、索引、数据帧...要禁用对齐,请在 others 中的任何系列/索引/数据帧上使用 .values。

    6.4K60

    Pandas 秘籍:6~11

    最后,在步骤 8 中,我们使用.loc索引器根据索引标签选择行,在第一步中将其作为学校名称。 此过滤器仅适用于具有最大值的学校。...数据帧以状态亚利桑那(AZ)而不是阿拉斯加(AK)开头,因此我们可以从视觉上确认某些更改。 让我们将此过滤后的数据帧的shape与原始数据进行比较。...最后,根据给定的阈值检查整个州的非白人学生百分比,这会产生布尔值。 最终结果是一个数据帧,其列与原始列相同,但过滤掉了不符合阈值的状态中的行。...在内部,pandas 将序列列表转换为单个数据帧,然后进行追加。 将多个数据帧连接在一起 通用的concat函数可将两个或多个数据帧(或序列)垂直和水平连接在一起。.../img/00229.jpeg)] 工作原理 第一个参数是concat函数所需的唯一参数,它必须是 Pandas 对象的列表,通常是数据帧或序列的列表或字典。

    35.6K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    过滤 在 Excel 中,过滤是通过图形菜单完成的。 可以通过多种方式过滤数据框,其中最直观的是使用布尔索引。...pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。...查找子串的位置 FIND电子表格函数返回子字符串的位置,第一个字符为 1。 您可以使用 Series.str.find() 方法查找字符串列中字符的位置。find 搜索子字符串的第一个位置。...按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。...数据透视表 电子表格中的数据透视表可以通过重塑和数据透视表在 Pandas 中复制。再次使用提示数据集,让我们根据聚会的规模和服务器的性别找到平均小费。

    21.5K20

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...= 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。 请Query()表达式已经是字符串。那么如何在另一个字符串中写一个字符串?...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.9K10

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    64520

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤pandas DataFrame,需要做的就是在查询函数中指定条件即可。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.8K20

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.3K20

    你的想象力限制了python能力,自动化识别函数调用关系,还能可视化

    前言 我喜欢用 python 做一些临时性数据工作,简单情况下,直接一把梭写到底。比如简单的多文件合并数据: 定义函数?一辈子都不可能。...得益于 pandas 的管道功能,我们可以更容易管理复杂的数据任务代码。关于如何以正确的思路使用 pandas 管道(pipe) ,具体可以查看我的 pandas 专栏。...工具使用 nicegui 制作 pandas 专栏马上开始最后关于工程化的阶段,本节介绍的可视化工具就是为了专栏而制作。工程化的章节内容,将会是大量 tableau prep 数据处理挑战任务实战。...此时仍然可以使用 inspect 模块的 currentframe 获取当前调用帧栈,从而获取上一层帧栈: 这里的意思就是:"谁调用我,我就拿了谁的全局变量" 帧栈相关知识,可以查看我的相关文章 剩下就非常简单...,遍历这个字典,筛选出函数对象,然后调用之前定义的 get_func_relationships : 行81:得到的是一个 列表中的列表 行80:使用 itertools 模块的 chain 给展开成一层列表

    49130

    干货!直观地解释和可视化每个复杂的DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...要记住:Explode某物会释放其所有内部内容-Explode列表会分隔其元素。 Stack 堆叠采用任意大小的DataFrame,并将列“堆叠”为现有索引的子索引。...记住:合并数据帧就像在水平行驶时合并车道一样。想象一下,每一列都是高速公路上的一条车道。为了合并,它们必须水平合并。...切记:在列表和字符串中,可以串联其他项。串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。

    14.9K20

    数据科学家私藏pandas高阶用法大全 ⛵

    这篇是从数据科学家朋友那里搞到的私藏,快一起薅羊毛 作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 本文地址:https...如果您想将分组后的数据字段整合成列表,可以使用lambda x:list(x),如下示例: import pandas as pd df = pd.DataFrame( { "...(列)展开为一个列表,然后将列表中的元素拆分成多行,可以使用str.split()和explode()组合,如下例: import pandas as pd df = pd.DataFrame({"...即使两个 DataFrame 的形状不相同也不受影响,联合时主要是根据索引来定位数据的位置。...DataFrame 中的列 我们可以根据名称中的子字符串过滤 pandas DataFrame 的列,具体是使用 pandas 的DataFrame.filter功能。

    6.4K30

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...导入数据 在绘制图形前,我们首先需要导入csv文件: import pandas as pd df=pd.read_csv(‘....此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。 ? 在上面的子图中,我们没有给子图添加标题。

    2.7K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 | 公众号 QbitAI 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...导入数据 在绘制图形前,我们首先需要导入csv文件: import pandas as pd df=pd.read_csv(‘....此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。 ? 在上面的子图中,我们没有给子图添加标题。

    2.1K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    整理 | 晓查 来自 | 量子位 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...导入数据 在绘制图形前,我们首先需要导入csv文件: import pandas as pd df=pd.read_csv(‘....此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。 ? 在上面的子图中,我们没有给子图添加标题。

    2K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...导入数据 在绘制图形前,我们首先需要导入csv文件: import pandas as pd df=pd.read_csv(‘....此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。 ? 在上面的子图中,我们没有给子图添加标题。

    2.7K20
    领券