本文介绍 Pandas DataFrame 中应用 IF 条件的5种不同方法。...(1) IF condition – Set of numbers 假设现在有一个由10个数字构成的DataFrame,想应用如下的 IF 条件 <= 4时,填值 True > 4时,填值 False...= 'Emma'), 'name_match'] = 'Mismatch' print (df) 查询结果如下: 在原始DataFrame列上应用 IF 条件 上面的案例中,我们学习了如何在新增列中应用...IF 条件,有时你可能会遇到将结果存储到原始DataFrame列中的需求。...然后,可以应用 IF 条件将这些值替换为零,如下为示例代码: import pandas as pd import numpy as np numbers = {'set_of_numbers': [
文章目录 1、iterrows() 2、iteritems() 3、itertuples() iterrows(): 将DataFrame迭代为(insex, Series)对。...itertuples(): 将DataFrame迭代为元祖。...iteritems(): 将DataFrame迭代为(列名, Series)对 有如下DataFrame数据 import pandas as pd inp = [{'c1':10, 'c2':100...}, {'c1':11, 'c2':110}, {'c1':12, 'c2':123}] df = pd.DataFrame(inp) print(df) # 输出 c1 c2 0 10
使用VBA可以为我们的工作簿添加很多额外的功能,让我们更好地了解工作簿所呈现的信息。下面是一个例子。
实现思路:使用jdk8的流式编程对list集合进行分组 I 对list根据条件进行分组 1.1 费率信息实体 OrganPayRate @ApiModelProperty(value = "类型...根据条件进行过滤和字段筛选 需求:修改代理商角色权限时,判断是否存在权限被移除,如果存在,则穿透删除所有下级代理商相对应的权限值。...菜单编码对应系统菜单的code") @TableField("menu_code") private Integer menuCode; 1.3 穿透删除所有下级代理商相对应的权限值 先查询满足条件的权限...根据代理商ID查询角色 List rids = getRoleIdByfacId(s); // 3.2....根据角色ID查询权限code,判断是否包含被删除的权限。
# 关于排序:如何根据函数返回的值对dart中的List进行排序 void main(){ List pojo = [POJO(5), POJO(3),POJO(7),POJO(1)
课程名称 Excel 2007/2010表格基础入门和常用函数视频教程(共40课) 第16课:IF函数基础用法与案例:根据条件计算代收服务费 课程目的 能基本掌握excel常用的表格设置和常用的技巧,...同时掌握日常工作中常用的函数,告别菜鸟,巩固基础。...课程详情 本套教程是尚西老师2014年1月份针对07和10版本重新升级录制的,属于菜鸟入门级,一共40课,前15课是基础表格操作和技巧,后25课是常用的函数精选。
day2:算法之美|打开算法之门与算法复杂性 day3.算法之美|指数型函数对算法的影响实际应用 day4.数学之美|斐波那契数列与黄金分割 day5.算法实践|贪心算法基础 day6.算法实践...3.1 指数型函数对传播学的应用 3.1.1 病毒传播研究模型 3.1.2 指数型函数和裂变式营运 四、总结 课程导学 从一盘棋的麦子作为展开: 本章节主要讲解了,算法的增量度,也是对上一个章节的具体补充...尤其是对指数型函数算法进行了重点的剖析。需要在实践中,尽量避免。...三、指数型函数与实际应用的结合 作为一名以解决实际问题为导向的产品,函数图像尤其是课程中的指数型函数在对传媒,病毒防控,舆情管控的数据统计和分析,以及方案决策上有着广泛的应用。...最常见的是初中高三个等级,每个等级的晋升设置不同的条件,同时获得不同的分销奖励。 集卡模型 集福、集字或者拼图片,这类集卡获得,其实对平台本身的用户体量要求比较高。
理论上来说,你可以定义任何函数,也可以让这些函数做任何事,今天,我们就来看几个小例子。 假设你是一名淘宝卖家,你要给你的顾客发快递,你有一套模板,只需要填入相关关键字就可以,那应该怎么办呢?...我们可以利用def函数来填充字典: def customers(phonenumber,things): """返回顾客手机号和购买的商品""" customer = {"手机号":phonenumber...注意一下,代码第三行、第四行的customer可以任意取名,但是两者要一样并且和定义的函数不一样。
DataFrame现在没有任何缺失值。 df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。...下面的代码将根据地理位置和性别的组合对行进行分组,然后为我们提供每组的平均流失率。...14.将不同的汇总函数应用于不同的组 我们不必对所有列都应用相同的函数。例如,我们可能希望查看每个国家/地区的平均余额和流失的客户总数。 我们将传递一个字典,该字典指示哪些函数将应用于哪些列。...19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。 考虑上一步(df_new)中的DataFrame。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。
文章来源:Python数据分析 1.Pandas的函数应用 apply 和 applymap 1....可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random.randn(5,4) - 1) print(df) print(np.abs...通过apply将函数应用到列或行上 示例代码: # 使用apply应用行或列数据 #f = lambda x : x.max() print(df.apply(lambda x : x.max()))...通过applymap将函数应用到每个数据上 示例代码: # 使用applymap应用到每个数据 f2 = lambda x : '%.2f' % x print(df.applymap(f2)) 运行结果...3 11 1 12 3 13 0 14 dtype: int64 0 10 0 14 1 12 3 11 3 13 dtype: int64 对DataFrame
Query 我们有时需要根据条件筛选数据,一个简单方法是query函数。为了更直观理解这个函数,我们首先创建一个示例 dataframe。...where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。...Pct_change 此函数用于计算一系列值的变化百分比。假设我们有一个包含[2,3,6]的序列。如果我们对这个序列应用pct_change,则返回的序列将是[NaN,0.5,1.0]。...Merge Merge()根据共同列中的值组合dataframe。考虑以下两个数据: ? 我们可以基于列中的共同值合并它们。设置合并条件的参数是“on”参数。 ?...Select_dtypes Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。
,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age+1)的新列。...,在聚合后的条件中则是having,而这在sql DataFrame中也有类似用法,其中filter和where二者功能是一致的:均可实现指定条件过滤。...中类似的用法是query函数,不同的是query()中表达相等的条件符号是"==",而这里filter或where的相等条件判断则是更符合SQL语法中的单等号"="。...这里补充groupby的两个特殊用法: groupby+window时间开窗函数时间重采样,对标pandas中的resample groupby+pivot实现数据透视表操作,对标pandas中的pivot_table...中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop
#8 —将lambda应用于DataFrame列 pandas DataFrame是一种可以保存表格数据的结构,例如Excel for Python。...它使我们能够对DataFrame中的值执行操作,而无需创建正式函数-即带有def and return 语句的函数 ,我们将在稍后介绍。...#7-将条件应用于多列 假设我们要确定哪些喜欢巴赫的植物也需要充足的阳光,因此我们可以将它们放在温室中。...函数sunny_shelf接受两个参数作为其输入-用于检查“full sun”的列和用于检查“ bach”的列。函数输出这两个条件是否都成立。...在第4行,我们 将此函数.apply()应用于DataFrame并指定应将哪些列作为参数传递。 axis=1 告诉pandas它应该跨列评估函数(与之相对 axis=0,后者跨行评估)。
作者:Pinar Ersoy 翻译:孙韬淳 校对:陈振东 本文约2500字,建议阅读10分钟 本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作...= 'ODD HOURS', 1).otherwise(0)).show(10) 展示特定条件下的10行数据 在第二个例子中,应用“isin”操作而不是“when”,它也可用于定义一些针对行的条件。...", "title", dataframe.title.endswith("NT")).show(5) 对5行数据进行startsWith操作和endsWith操作的结果。...and logical dataframe.explain(4) 8、“GroupBy”操作 通过GroupBy()函数,将数据列根据指定函数进行聚合。...(10) 作者被以出版书籍的数量分组 9、“Filter”操作 通过使用filter()函数,在函数内添加条件参数应用筛选。
,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值 ?...query,按列对dataframe执行条件查询,一般可用常规的条件查询替代 ?...loc和iloc应该理解为是series和dataframe的属性而非函数,应用loc和iloc进行数据访问就是根据属性值访问的过程 另外,在pandas早些版本中,还存在loc和iloc的兼容结构,即...apply,既适用于series对象也适用于dataframe对象,但对二者处理的粒度是不一样的:apply应用于series时是逐元素执行函数操作;apply应用于dataframe时是逐行或者逐列执行函数操作...applymap,仅适用于dataframe对象,且是对dataframe中的每个元素执行函数操作,从这个角度讲,与replace类似,applymap可看作是dataframe对象的通函数。 ?
例如,对于以上简单的DataFrame数据框,需要创建一个新的列C,一般来说可能有3种创建需求:常数列、指定序列数据以及由已知列通过一定计算产生。那么应用assign完成这3个需求分别是: ?...另一方面,pandas中实际上是内置了大量的SQL类语法(包括下面要介绍的query也是),而eval的功能正是执行类似SQL语法中的计算,对已知列执行一定的计算时可用eval完成。...例如对于以上dataframe,需要根据不同场景查询满足条件的记录,调用query的实现方式为: ?...例如,下述例子中C C列中有个空格,直接用于字符串表达式会存在报错,此时可使用反引号加以修饰,同时查询条件中应用了@修饰符引用外部变量。当然,与eval中类似,这里当然也可以用f字符串修饰引用。...注意事项: query中也支持inplace参数,控制是否将查询过滤条件作用于dataframe本身; 与eval类似,query中也支持引用外部函数。
总结来说,Series和DataFrame各有优势,在选择使用哪种数据结构时应根据具体的数据操作需求来决定。如果任务集中在单一列的高效操作上,Series会是更好的选择。...数据转换: 使用 melt()函数将宽表转换为长表。 使用 pivot_table()函数创建交叉表格。 使用apply()函数对每一行或每一列应用自定义函数。...条件筛选与函数处理(Condition Selection and Function Processing) : 使用条件筛选和自定义函数可以进一步增强时间序列数据的处理能力。...例如,可以根据特定条件筛选出满足某些条件的数据段,并对这些数据段应用自定义函数进行处理。...例如,按列计算总和: total_age = df.aggregate (sum, axis=0) print(total_age) 使用groupby()函数对数据进行分组,然后应用聚合函数
*修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------- 合并 join / union -------- 3.1 横向拼接rbind --- 3.2 Join根据条件...:返回一个不包含重复记录的DataFrame 6.2 dropDuplicates:根据指定字段去重 -------- 7、 格式转换 -------- pandas-spark.dataframe互转...3.1 横向拼接rbind result3 = result1.union(result2) jdbcDF.unionALL(jdbcDF.limit(1)) # unionALL — 3.2 Join根据条件...— 将df的每一列应用函数f: df.foreach(f) 或者 df.rdd.foreach(f) 将df的每一块应用函数f: df.foreachPartition(f) 或者 df.rdd.foreachPartition...(f) ---- 4.4 【Map和Reduce应用】返回类型seqRDDs ---- map函数应用 可以参考:Spark Python API函数学习:pyspark API(1) train.select
可以进一步引入不同的插入方法,为读者提供更灵活和强大的工具,以满足各种数据处理需求: 1.使用函数应用: python Copy code import pandas as pd # 创建一个简单的DataFrame...# 定义一个函数,将年龄加上5 def add_five(age): return age + 5 # 使用apply函数将函数应用到'Age'列,并创建新列'Adjusted_Age' df...['Adjusted_Age'] = df['Age'].apply(add_five) print(df) 这里我们通过apply函数将add_five函数应用到’Age’列的每一行,创建了一个名为...在这个例子中,我们使用numpy的where函数,根据分数的条件判断,在’Grade’列中插入相应的等级。...在实际应用中,我们可以根据具体需求使用不同的方法,如直接赋值或使用assign()方法。 Pandas是Python中必备的数据处理和分析库,熟练地使用它能够极大地提高数据处理和分析的效率。
RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。 RDD和DataFrame 上图直观地体现了DataFrame和RDD的区别。...这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运行期倾向于创建大量临时对象,对GC造成压力。...利用 DataFrame API进行开发,可以免费地享受到这些优化效果。 减少数据读取 分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。...上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。
领取专属 10元无门槛券
手把手带您无忧上云