首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 数据处理 合并二维数组和 DataFrame 中特定列的值

首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...print(random_array) print(values_array) 上面两行代码分别打印出前面生成的随机数数组和从 DataFrame 提取出来的值组成的数组。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

15700
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    合并excel的两列,为空的单元格被另一列有值的替换?

    一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【逆光】:好的,我去看看这个函数谢谢 【逆光】:我列表的两列不挨着, a b互补,我需要变成c (c 包含 a 和 b) 【Siris】:最笨的方法遍历判断呗 【逆光】:太慢了,我的数据有点多。...【Siris】:你是说c列是a列和b列的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。...【瑜亮老师】:3列一起就是df.loc[:, ['列1', '列', '列3'']] = ["值", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前的变量。

    11910

    Tkinter mainloop() 循环的逻辑,以及变量为什么不会被重新赋值为初始值?

    1、问题背景在使用 Tkinter 开发 GUI 程序时,您可能会遇到这样的疑问:为什么在使用 window.mainloop() 循环时,变量不会被重新赋值为它们的初始值?...难道 window.mainloop() 的逻辑不会覆盖 canvastext,使其再次具有文本值“Hi”,而不是新的 Spinbox 值吗?...也许我对 window.mainloop() 的作用完全误解了,但如果它确实使程序不断循环执行代码,那么为什么不将变量重新赋值为它们的初始值呢?...它只是不断地从事件队列中获取事件,然后将事件分发给相应的处理函数。处理函数可以修改变量的值,但不会影响其他代码中的变量。也就是说,变量的值只会在处理函数中被修改,而在其他代码中不会被修改。...希望这篇技术文章能够帮助您理解 Tkinter window.mainloop() 循环的逻辑,以及变量为什么不会被重新赋值为初始值。

    28910

    机器学习速成第一集——机器学习基础

    7.贝叶斯定理: 贝叶斯定理是条件概率的一种重要应用,它描述了根据某些证据或观察更新对某事件的概率估计的过程。...8.随机变量: 离散随机变量:取值为可数集合的随机变量。 (当我们说一个集合是“可数”的时候,这意味着这个集合中的元素可以通过自然数来一一对应。...换句话说,如果一个集合中的元素可以用自然数来编号,那么这个集合就是可数的) 连续随机变量:取值为实数区间内的随机变量。...第一个排序结果将根据"A"列的值以降序排序,第二个排序结果将根据"A"列和"B"列的值进行降序排序。'''...# 按多列排序,将缺失值放在前面 sorted_df1 = df.sort_values(by=['A', 'B']).fillna(df.min()) print(sorted_df1) # 按多列排序

    7610

    数据导入与预处理-课程总结-04~06章

    names:表示DataFrame类对象的列索引列表,当names没被赋值时,header会变成0,即选取数据文件的第一行作为列名;当 names 被赋值,header 没被赋值时,那么header会变成...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...,但有时我们只需要根据某列查找重复值 df[df.duplicated(['gender'])] # 删除全部的重复值 df.drop_duplicates() # 删除重复值|指定 # 删除全部的重复值...正态分布也称高斯分布,是统计学中十分重要的概率分布,它有两个比较重要的参数:μ和σ,其中μ是遵从正态分布的随机变量(值无法预先确定仅以一定的概率取值的变量)的均值,σ是此随机变量的标准差。...lsuffix: 左DataFrame中重复列的后缀 rsuffix: 右DataFrame中重复列的后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df

    13.1K10

    《机器学习》(入门1-2章)

    2.目标就是根据这些训练数据,寻找正确的特征与标记之间的对应关系。 3.在建立模型的过程中,监督学习将预测的结果与训练数据的标记结果作比较,不断的调整模型,直到准确率达到预期值。 ?...创建数组:pandas.Series([1,2,3]) 第一列为索引,第二列为数值 a=pandas.DataFrame(numpy.arange(12),reshape(3,4)) a[1] 为提取第一列...:a.dropna() 删除特征为空的列:a.dropna(axis=1,how=‘any’) 空值替换:a.fillna(0) 空值用均值替换:a.fillna(a[‘col4’].mean())...条件分布:对于二维随机变量(X,Y),可以考虑在其中一个随机变量取得(可能的)固定值的条件下,另一随机变量的概率分布,这样得到的X或Y的概率分布叫做条件概率分布,简称条件分布。...方差:一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个随机变量的方差也称为它的二阶矩或二阶中心动差,方差的算术平方根称为该随机变量的标准差。

    1.4K31

    Python数据分析-pandas库入门

    数据结构 DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...,可以将 DataFrame 的列获取为一个 Series,代码示例: frame2['state'] frame2.state 列可以通过赋值的方式进行修改,赋值方式类似 Series。...例如,我们可以给那个空的 “debt” 列赋上一个标量值或一组值(数组或列表形式),代码示例: frame2.debt = np.arange(6.) frame2 注意:将列表或数组赋值给某个列时,...two', 'four','five']) frame2.debt = val frame2 为不存在的列赋值会创建出一个新列。...作为 del 的例子,这里先添加一个新的布尔值的列,state 是否为 ‘Ohio’,代码示例: frame2['eastern'] = frame2.state=='Ohio' frame2 DataFrame

    3.7K20

    Maximal Information Coefficient (MIC)最大互信息系数详解与实现「建议收藏」

    互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性。...算法原理的通俗解释 算法原理或许介绍的还是有点负责,下面还有一种简单带的解释: MIC计算分为三个步骤: 给定i、j,对XY构成的散点图进行i列j行网格化,并求出最大的互信息值 对最大的互信息值进行归一化...根据互信息计算公式,得到X和Y在这种分区下的互信息为: 以此类推,算出哪种方案得到的互信息值最大,最大的互信息值是多少。...c(float 取值范围为大于)) – 确定比每个分区中的列多多个块。默认值为15,这意味着当尝试在x轴上绘制x网格线时,算法将以最多15 * x个团块开始。...然后生成一个750行,10列取值范围在0-1内的随机矩阵。之后按照”Friedamn #1″生成Y,并将X的前四列,增加随机项,生成11-14项特征。

    2.9K21

    Python轻松实现统计学中重要的相关性分析

    在一般情况下,我们通过实验或者调查统计获取的数据很大一部分都属于离散随机变量,那么这里的期望我们也可以简单的理解为平均数,那么既然是平均数,那么我们就可以非常简单编写一个计算离散变量的期望的函数了。...接下来,我们看一下协方差和相关系数的定义: 协方差 ? 相关系数 ? 同样的,我们根据上述的公式编写函数。...协方差矩阵数据的看法也不难,我们可以以上面的结果为例,矩阵1行1列,表示的是 a 数据的方差,这和我们上面的计算结果一致,然后1行2列和2行1列分别是 a b 以及 b a 的协方差,所以他们的值是一样的...,然后最后2行2列就是 b 数据的方差。...import pandas as pd # 使用 DataFrame 作为数据结构,为方便计算,我们会将 ab 矩阵转置 dfab = pd.DataFrame(ab.T, columns=['A',

    2.1K10

    利用Python进行数据分析(7) pandas Series和DataFrame简单介绍

    当没有显示指定索引的时候,Series 自动以 0 开始,步长为 1 为数据创建索引。你也可以通过 index 参数显示指定索引: ?...对于 Series 对象里的单个数据来说,和普通数组一样,根据索引获取对应的数据或重新赋值;不过你还可以传入一个索引的数组来获取数据或未数据重新赋值: ?...三、DataFrame DataFrame 是一个表格型的数据结构。它提供有序的列和不同类型的列值。例如将一个由 NumPy 数组组成的字典转换成 DataFrame 对象: ?...DataFrame 默认根据列名首字母顺序进行排序,想要指定列的顺序?传入一个列名的字典即可: ? 如果传入的列名找不到,它不会报错,而是产生一列 NA 值: ?...DataFrame 不仅可以以字典索引的方式获取数据,还可以以属性的方法获取,例如: ? 修改列的值: ? 删除某一列: ?

    1.1K40

    Machine Learning-特征工程之卡方分箱(Python)

    卡方分布的定义如下: 若k个独立的随机变量Z1, Z2,..., Zk 满足标准正态分布 N(0,1) , 则这k个随机变量的平方和: ? 为服从自由度为k的卡方分布,记作: ?...实际应用中,我们先假设原假设成立,计算出卡方的值,卡方表示观察值与理论值间的偏离程度。 卡方值的计算公式为: ? 其中A为实际频数,E为期望频数。...三、什么是卡方分布表 横轴为p值,纵轴为自由度。 (自由度的概念:自由度k=(行数-1)*(列数-1),详情见实例) ?...根据卡方值的计算公式,计算: ? 算得卡方值=10.01。 得到卡方值以后,接下来需要查询卡方分布表(见上面?)来判断p值,从而做出接受或拒绝原假设的决定。...2、合并阶段: (1)对每一对相邻的组,计算卡方值。 (2)根据计算的卡方值,对其中最小的一对邻组合并为一组。

    5.9K20

    【机器学习基础】数学推导+纯Python实现机器学习算法4:决策树之ID3算法

    若离散随机变量X的概率分布为: ? 则随机变量X的熵定义为: ? 同理,对于连续型随机变量Y,其熵可定义为: ?...当给定随机变量X的条件下随机变量Y的熵可定义为条件熵H(Y|X): ? 所谓信息增益就是数据在得到特征X的信息时使得类Y的信息不确定性减少的程度。...假设数据集D的信息熵为H(D),给定特征A之后的条件熵为H(D|A),则特征A对于数据集的信息增益g(D,A)可表示为: g(D,A) = H(D) - H(D|A) 信息增益越大,则该特征对数据集确定性贡献越大...然后我们需要定义根据特征和特征值进行数据划分的方法: def split_dataframe(data, col): ''' function: split pandas dataframe...[key] = data[:][data[col] == key] return result_dict 根据temp和其三个特征值的数据集划分示例: ?

    88030
    领券