首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

根据pandas dataframe中的另一列获取名称

在pandas中,我们可以使用另一列的值来获取DataFrame中的名称。具体步骤如下:

  1. 首先,导入pandas库并加载数据集。假设我们有一个名为"df"的DataFrame,其中包含多列数据。
代码语言:txt
复制
import pandas as pd
df = pd.DataFrame(...)
  1. 然后,我们可以使用另一列的值作为索引来获取名称。假设我们有一个名为"col1"的列,我们可以使用该列的值来获取名为"col2"的列中对应的名称。
代码语言:txt
复制
df['col2'][df['col1'] == '某个值']

这将返回"col1"列等于"某个值"的行中,"col2"列对应的名称。

  1. 如果我们想获取多个匹配的名称,可以使用tolist()函数将结果转换为列表。
代码语言:txt
复制
df['col2'][df['col1'] == '某个值'].tolist()

这将返回一个包含所有匹配的名称的列表。

这是根据你提供的问答内容的一个完善且全面的答案。根据描述的要求,我无法提供腾讯云相关产品和产品介绍链接地址,也不能提及其他云计算品牌商。如果你有任何其他问题或需要进一步解释,请随时告诉我。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【如何在 Pandas DataFrame 插入一

前言:解决在Pandas DataFrame插入一问题 Pandas是Python重要数据处理和分析库,它提供了强大数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...为什么要解决在Pandas DataFrame插入一问题? Pandas DataFrame是一种二维表格数据结构,由行和组成,类似于Excel表格。...解决在DataFrame插入一问题是学习和使用Pandas必要步骤,也是提高数据处理和分析能力关键所在。 在 Pandas DataFrame 插入一个新。...在这个例子,我们使用numpywhere函数,根据分数条件判断,在’Grade’插入相应等级。...总结: 在Pandas DataFrame插入一是数据处理和分析重要操作之一。通过本文介绍,我们学会了使用Pandas库在DataFrame插入新

72910
  • pandas按行按遍历Dataframe几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按遍历,将DataFrame每一迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...示例数据 import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df =...(index) # 输出每行索引值 1 2 row[‘name’] # 对于每一行,通过列名name访问对应元素 for row in df.iterrows(): print(row[‘c1

    7.1K20

    根据 PID 获取容器所在 Pod 名称

    在管理 Kubernetes 集群过程,我们经常会遇到这样一种情况:在某台节点上发现某个进程资源占用量很高,却又不知道是哪个容器里进程。有没有办法可以根据 PID 快速找到 Pod 名称呢?...假设现在有一个 prometheus 进程 PID 是 14338: ? 为了进一步挖掘信息,有两种思路,一种是挖掘 PID 对应容器信息,另一种是挖掘 PID 对应 Pod 信息。 1....d6f24b62 最后一步根据容器 ID 获取 Pod 名称,如果你容器运行时是 containerd 或 crio,可以使用 crictl 来获取容器信息: # Go Template $ crictl...print $6'} 8e018a8e-4aaa-4ac6-986a-1a5133a4bcf1 然后根据 Pod UID 获取 Pod 名称: $ crictl ps -o json | jq '.[...整合 方法是有了,怎么才能将所有的步骤合并成一个步骤,一步到位获取 Pod 名称呢?

    6.8K21

    pandas | 如何在DataFrame通过索引高效获取数据?

    今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构一些常见用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合dict,所以我们想要查询表某一,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...loc 首先我们来介绍loc,loc方法可以根据传入行索引查找对应行数据。注意,这里说是行索引,而不是行号,它们之间是有区分。...行索引其实对应于Series当中Index,也就是对应Series索引。所以我们一般把行索引称为Index,而把索引称为columns。...说白了我们可以选择我们想要字段。 ? 索引也可以切片,并且可以组合在一起切片: ? iloc iloc从名字上来看就知道用法应该和loc不会差太大,实际上也的确如此。

    13.1K10

    (六)Python:PandasDataFrame

    我们可以通过一些基本方法来查看DataFrame行索引、索引和值,代码如下所示: import pandas as pd import numpy as np data...# 将pay一全部删除 print(frame) print(frame.drop(1, axis=0)) # 删除第一行 print(frame.drop(index=2)) # 另一种删除方法...admin  3 另一种删除方法     name  a 1  admin  1 3  admin  3 (1)添加         添加可直接赋值,例如给 aDF 添加 tax 方法如下...,但这种方式是直接对原始数据操作,不是很安全,pandas 可利用 drop()方法删除指定轴上数据,drop()方法返回一个新对象,不会直接修改原始数据。...对象修改和删除还有很多方法,在此不一一举,有兴趣同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大统计功能,它有大量函数可以使用

    3.8K20

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回DataFrame...,这种轴索引包含索引器series不能采用ser[-1]去获取最后一个,这会引起歧义。...不过这个用起来总是觉得有点low,有没有更好方法呢,有,可以不去删除,直接: data7 = data6.ix[:,1:]1 这样既不改变原有数据,也达到了删除神烦,当然我这里时第0删除,可以根据实际选择所在删除之...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandasDataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    如何让pandas根据指定指进行partition

    不断将原有数据放入其中,然后到时候直接遍历keys,根据两个list构建pd,排序后导出。 更python做法 朴素想法应该是够用,但是不美观,不够pythonic,看着很别扭。...于是我搜索了How to partition DataFrame by column value in pandas?...boolean index stackoverflow里有人提问如何将离散数据进行二分类,把小于和大于某个值数据分到两个DataFrame。...groupby听着就很满足我需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的元素。...df.groupby('ColumnName')可以进行遍历,结果是一个(name,subDF)二元组,name为分组元素名称,subDF为分组后DataFrame 对df.groupby('ColumnName

    2.7K40

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行值 (2)读取第二值 (3)同时读取某行某 (4)读取DataFrame某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...'E']) # 写入本地 data.to_excel("D:\\实验数据\\data.xls", sheet_name="data") print(data) 1.loc方法 loc方法是通过行、名称或者标签来寻找我们需要

    8.8K21

    pandas | DataFrame排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗架构师。今天说一说pandas | DataFrame排序与汇总方法,希望能够帮助大家进步!!!...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中排序方法。...Series当中排序方法有两个,一个是sort_index,顾名思义根据Series索引对这些值进行排序。另一个是sort_values,根据Series值来排序。...除了sum之外,另一个常用就是mean,可以针对一行或者是一求平均。 由于DataFrame当中常常会有为NA元素,所以我们可以通过skipna这个参数排除掉缺失值之后再计算平均值。...另一个我个人觉得很好用方法是descirbe,可以返回DataFrame当中整体信息。比如每一均值、样本数量、标准差、最小值、最大值等等。

    3.9K20

    pandas | DataFrame排序与汇总方法

    今天是pandas数据处理专题第六篇文章,我们来聊聊DataFrame排序与汇总运算。...排序 排序是我们一个非常基本需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中排序方法。...Series当中排序方法有两个,一个是sort_index,顾名思义根据Series索引对这些值进行排序。另一个是sort_values,根据Series值来排序。...首先是sum,我们可以使用sum来对DataFrame进行求和,如果不传任何参数,默认是对每一行进行求和。 ? 除了sum之外,另一个常用就是mean,可以针对一行或者是一求平均。 ?...另一个我个人觉得很好用方法是descirbe,可以返回DataFrame当中整体信息。比如每一均值、样本数量、标准差、最小值、最大值等等。

    4.6K50

    pandas dataframe explode函数用法详解

    在使用 pandas 进行数据分析过程,我们常常会遇到将一行数据展开成多行需求,多么希望能有一个类似于 hive sql explode 函数。 这个函数如下: Code # !.../usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode...(df, "listcol") Description 将 dataframe 按照某一指定进行展开,使得原来每一行展开成一行或多行。...( 注:该可迭代, 例如list, tuple, set) 补充知识:Pandas字典/列表拆分为单独 我就废话不多说了,大家还是直接看代码吧 [1] df Station ID Pollutants...dataframe explode函数用法详解就是小编分享给大家全部内容了,希望能给大家一个参考。

    3.9K30

    用过Excel,就会获取pandas数据框架值、行和

    df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...每种方法都有其优点和缺点,因此应根据具体情况使用不同方法。 点符号 可以键入“df.国家”以获得“国家”,这是一种快速而简单获取方法。但是,如果列名包含空格,那么这种方法行不通。...因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格名称。 图5 获取 方括号表示法使获得多变得容易。语法类似,但我们将字符串列表传递到方括号。...请注意双方括号: dataframe[[列名1,列名2,列名3,…]] 图6 使用pandas获取行 可以使用.loc[]获取行。请注意此处是方括号,而不是圆括号()。...记住这种表示法一个更简单方法是:df[列名]提供一,然后添加另一个[行索引]将提供该特定项。 假设我们想获取第2行Mary Jane所在城市。

    19.1K60

    Pandas DataFrame 自连接和交叉连接

    自连接 顾名思义,自连接是将 DataFrame 连接到自己连接。也就是说连接左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 行。...示例 1:查询分层 DataFrame 假设有以下表,它表示了一家公司组织结构。manager_id 引用employee_id ,表示员工向哪个经理汇报。...要获取员工向谁汇报姓名,可以使用自连接查询表。 我们首先将创建一个新名为 df_managers DataFrame,然后join自己。...下表说明了将表 df1 连接到另一个表 df2 时交叉连接结果。 示例 2:创建产品库存 此示例目标是获取服装店库存,可以通过任意SKU(这里是颜色)获得组合。...总结 在本文中,介绍了如何在Pandas中使用连接操作,以及它们是如何在 Pandas DataFrame 执行。这是一篇非常简单入门文章,希望在你处理数据时候有所帮助。

    4.2K20
    领券