目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与值 基本操作 统计功能 ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index...的Series集合 创建 DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引 ...(loc)和位置(iloc)索引,也可通过 append()方法或 concat()函数等进行处理,以 loc 为例,例如要给 aDF 添加一个新行,可用如下方法: import pandas as pd...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能 DataFrame对象成员找最低工资和高工资人群信息 DataFrame有非常强大的统计功能,它有大量的函数可以使用
大家好,又见面了,我是你们的朋友全栈君。 api参考: fillna: 使用指定的方法填充 NA/NaN 值。...>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],...C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 3、将“A”、“B”、“C”和“D”列中的所有...values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 4、只替换第一个...填充时,替换沿相同的列名和相同的索引发生 >>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE")) >>> df.fillna(df2
今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...首先是sum,我们可以使用sum来对DataFrame进行求和,如果不传任何参数,默认是对每一行进行求和。 ? 除了sum之外,另一个常用的就是mean,可以针对一行或者是一列求平均。 ?...另一个我个人觉得很好用的方法是descirbe,可以返回DataFrame当中的整体信息。比如每一列的均值、样本数量、标准差、最小值、最大值等等。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...除了sum之外,另一个常用的就是mean,可以针对一行或者是一列求平均。 由于DataFrame当中常常会有为NA的元素,所以我们可以通过skipna这个参数排除掉缺失值之后再计算平均值。...另一个我个人觉得很好用的方法是descirbe,可以返回DataFrame当中的整体信息。比如每一列的均值、样本数量、标准差、最小值、最大值等等。
自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...要获取员工向谁汇报的姓名,可以使用自连接查询表。 我们首先将创建一个新的名为 df_managers的 DataFrame,然后join自己。...df_manager2 的输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成两个或多个表中行的笛卡尔积。它将第一个表中的行与第二个表中的每一行组合在一起。...下表说明了将表 df1 连接到另一个表 df2 时交叉连接的结果。 示例 2:创建产品的库存 此示例的目标是获取服装店的库存,可以通过任意的SKU(这里是颜色)获得组合。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。
: df.loc[‘image1’:‘image10’, ‘age’:‘score’] 实例: import numpy as np import pandas as pd from pandas...import Series, DataFrame np.random.seed(666) df = pd.DataFrame(np.random.rand(25).reshape([5, 5]), index...0.700437 0.727858 B 0.012703 0.099929 D 0.200248 0.700845 E 0.774479 0.110954 F 0.023236 0.197503 ''' # 赋值于一个新的...dataframe sub_df = df[['c1', 'c3', 'c5']] ''' c1 c3 c5 A 0.700437 0.676514 0.951458 B 0.012703 0.048813...:'B', 'c1':'c3']) # 基于 label 选择 ''' c1 c3 A 0.700437 0.676514 B 0.012703 0.048813 ''' 需要注意的是: 在iloc使用索引定位的时候
DataFrame简介: DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; dict
今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算。...今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...函数与映射 pandas的另外一个优点是兼容了numpy当中的一些运算方法和函数,使得我们也可以将一些numpy当中的函数运用在DataFrame上,这样就大大拓展了使用方法以及运算方法。...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...总结 今天的文章我们主要介绍了pandas当中apply与applymap的使用方法, 这两个方法在我们日常操作DataFrame的数据非常常用,可以说是手术刀级的api。
DataFrame简介: DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; dict...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns
参考链接: Pandas DataFrame中的转换函数 pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍...,但在实际使用过程中,我发现书中的内容还只是冰山一角。...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。 ...])Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.DataFrame.isin(values)是否包含数据框中的元素...二元运算 方法描述DataFrame.add(other[, axis, level, fill_value])加法,元素指向DataFrame.sub(other[, axis, level,
背景介绍 DataFrames和Series是用于数据存储的pandas中的两个主要对象类型:DataFrame就像一个表,表的每一列都称为Series。您通常会选择一个系列来分析或操纵它。...今天我们将学习如何重命名Pandas DataFrame中的列名。 ? 入门示例 ? ? ? ?...上述代码: # ## 如何重命名pandas dataframe中的列名字 # In[32]: import pandas as pd # In[33]: data = pd.read_csv('ufo.csv...'Shape Reported':'Shape_Reported',\ 'Colors Reported':'Colors_Reported'},inplace=True) # ## 打印重命名后的列...# In[38]: data.columns # ## 定义一个list 整体替换列名 # In[39]: data_cols= ['city', 'colors reported', 'shape
本文介绍 Pandas DataFrame 中应用 IF 条件的5种不同方法。...(1) IF condition – Set of numbers 假设现在有一个由10个数字构成的DataFrame,想应用如下的 IF 条件 <= 4时,填值 True > 4时,填值 False...IF 条件,有时你可能会遇到将结果存储到原始DataFrame列中的需求。...假设,我们创建了一个包含12个数字的DataFrame,其最后的两个数字为0。...在另一个实例中,假设有一个包含 NaN 值的 DataFrame。
pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。...DataFrame.isin(values) 是否包含数据框中的元素 DataFrame.where(cond[, other, inplace, …]) 条件筛选 DataFrame.mask(cond...二元运算 方法 描述 DataFrame.add(other[, axis, level, fill_value]) 加法,元素指向 DataFrame.sub(other[, axis, level,...参考文献: http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
问题描述: 创建一个包含10行6列随机数的DataFrame,行标签从大写字母A开始,列标签从小写字母u开始。...然后从上向下遍历,如果某行u列的值比上一行u列的值大,就把该行x列的值改为上一行x列的值加1,否则保持原来的值不变。 参考代码: 运行结果:
大家好,又见面了,我是你们的朋友全栈君。 有时候DataFrame中的行列数量太多,print打印出来会显示不完全。就像下图这样: 列显示不全: 行显示不全: 添加如下代码,即可解决。...显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_option('display.max_rows', None) #设置value的显示长度为...100,默认为50 pd.set_option('max_colwidth',100) 根据自己的需要更改相应的设置即可。...ps:set_option()的所有属性: Available options: - display....display.max_categories : int This sets the maximum number of categories pandas should output when
问题描述: 在使用Python+pandas进行数据分析和处理时,把若干结构相同的DataFrame对象中的数据按顺序先后写入同一个Excel文件中的同一个工作表中,纵向追加。...方法一:数据量小时,可以把所有DataFrame对象的数据纵向合并到一起,然后再写入Excel文件,参考代码: ?...方法二:当DataFrame对象较多并且每个DataFrame中的数据量都很大时,不适合使用上面的方法,可以使用DataFrame对象方法to_excel()的参数startrow来控制每次写入的起始行位置...需要注意的是,xlsx格式的Excel文件最大行数有限制,如果超过了会抛出异常,例如, ?...如果需要把多个DataFrame对象的数据以横向扩展的方式写入同一个Excel文件的同一个工作表中,除了参考上面的方法一对DataFrame对象进行横向拼接之后再写入Excel文件,可以使用下面的方式,
Mergesort是唯一稳定的算法 import pandas as pd import numpy as np unsorted_df = pd.DataFrame({'col1':[2,1,1,1...a替换为值b 10 repeat(value) 重复每个元素指定的次数 11 count(pattern) 返回模式中每个元素的出现总数 12 startswith(pattern) 如果系列/索引中的元素以模式开始...,则返回true 13 endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true 14 find(pattern) 返回模式第一次出现的位置 15 findall(pattern...) 返回模式的所有出现的列表 16 swapcase 变换字母大小写 17 islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 18 isupper() 检查系列/索引中每个字符串中的所有字符是否大写...,返回布尔值 19 isnumeric() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值 字符串处理函数在大家的不断练习和使用中会起到巨大的作用,可快速处理绝大多数的字符串处理场景!
的容器,DataFrame是 Series 的容器; 如何使用Pandas #!...print(row_index, row) # intertuples(),为DataFrame中的每一行返回一个产生一个命名元祖的迭代器,元祖的第一个元素将是行的相应索引值,剩余的值是行值 print...# 12、startswith(pattern) 如果系列/索引中的元素以模式开始,则返回true。 # 13、endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true。...# 17、islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 # 18、isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值 # 19、isnumeric...() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。
pandas应用领域广泛,包括金融、经济、统计、分析等学术和商业领域。本文将介绍pandas中Series、DataFrame、Index等常用类的基本用法。...:分组对象,通过传入需要分组的参数实现对数据分组 Timestamp:时间戳对象,表示时间轴上的一个时刻 Timedelta:时间差对象,用来计算两个时间点的差值 在这6个类中,Series、DataFrame...对象为其余pandas对象存储轴标签、管理轴标签和其他元数据(如轴名称)。...append:连接另一个Index对象,产生一个新的Index difference:计算两个Index对象的差集,得到一个新的Index intersection:计算两个Index对象的交集 union...:计算两个Index对象的并集 isin:计算一个Index是否在另一个Index,返回bool数组 delete:删除指定Index的元素,并得到新的Index drop:删除传入的值,并得到新的Index
通过纳入大量库和一些标准数据模型,提供了高效操作大型数据集所需工具; 安装 pip install pandas 数据类型 Series 定义 一维的数组类型,其中每个元素有各自标签;可当作一个由带标签元素组成的...print(row_index, row) # intertuples(),为DataFrame中的每一行返回一个产生一个命名元祖的迭代器,元祖的第一个元素将是行的相应索引值,剩余的值是行值 print...# 12、startswith(pattern) 如果系列/索引中的元素以模式开始,则返回true。 # 13、endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true。...# 17、islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值 # 18、isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值 # 19、isnumeric...() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值。
领取专属 10元无门槛券
手把手带您无忧上云