首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

numpy和pandas库实战——批量得到文件夹下多个CSV文件中的第一列数据并求其最值

/前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨

9.5K20

Pandas速查卡-Python数据科学

('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数...pd.notnull() 与pd.isnull()相反 df.dropna() 删除包含空值的所有行 df.dropna(axis=1) 删除包含空值的所有列 df.dropna(axis=1,thresh...=n) 删除所有小于n个非空值的行 df.fillna(x) 用x替换所有空值 s.fillna(s.mean()) 将所有空值替换为均值(均值可以用统计部分中的几乎任何函数替换) s.astype(float...(平均值可以用统计部分中的几乎任何函数替换) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表,按col1分组并计算...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

9.2K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 入门 1 :数据集的创建和绘制

    此时的名称列无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏中可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该只包含代表出生在一个特定年份具有特定名称的婴儿数目的整数。...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...# 检查数据列的类型 df.dtypesOut[1]: Names object Births int64 dtype: object#检查Births列 df.Births.dtype...对数据框进行排序并选择顶行 使用max()属性查找最大值 # Method 1: Sorted = df.sort_values(['Births'], ascending=False) Sorted.head...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    6.1K10

    (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    图2   可以看出,数据集包含了数值、日期、文本以及json等多种类型的数据,现在假设我们需要基于此数据完成以下流程: 1、删除original_title列 2、对title列进行小写化处理 3...2.2.1 basic_stages basic_stages中包含了对数据框中的行、列进行丢弃/保留、重命名以及重编码的若干类: ColDrop:   这个类用于对指定单个或多个列进行丢弃...图7 DropNa:   这个类用于丢弃数据中空值元素,其主要参数与pandas中的dropna()保持一致,核心参数如下: axis:0或1,0表示删除含有缺失值的行,1表示删除含有缺失值的列...  下面是举例演示,首先我们创造一个包含缺失值的数据框: import numpy as np # 创造含有缺失值的示例数据 df = pd.DataFrame({'a': [1, 4, 1, 5],...图23 2.2.3 text_stages text_stages中包含了对数据框中文本型变量进行处理的若干类,下文只介绍其中我认为最有用的: RegexReplace:   这个类用于对文本型列进行基于正则表达式的内容替换

    1.4K10

    案例 | 用pdpipe搭建pandas数据分析流水线

    ');data.head(3) 图2 可以看出,数据集包含了数值、日期、文本以及json等多种类型的数据,现在假设我们需要基于此数据完成以下流程: 1、删除original_title列 2、对title...2.2.1 basic_stages basic_stages中包含了对数据框中的行、列进行丢弃/保留、重命名以及重编码的若干类: ColDrop:   这个类用于对指定单个或多个列进行丢弃,其主要参数如下...:0或1,0表示删除含有缺失值的行,1表示删除含有缺失值的列 下面是举例演示,首先我们创造一个包含缺失值的数据框: import numpy as np # 创造含有缺失值的示例数据 df = pd.DataFrame...设置drop_first为False: pdp.OneHotEncode(drop_first=False).apply(df) 图23 2.2.3 text_stages text_stages中包含了对数据框中文本型变量进行处理的若干类...,默认为None,即直接替换原始列 drop:bool型,用于决定是否删除替换前的原始列,默认为True,即删除原始列 下面是举例演示: 替换original_language中的'en'或'cn'为'

    82410

    【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)

    (*)") # 检查用户是否选择了保存文件的路径 if file_name: # 获取文本框中的内容 file_content...self.text_edit.toPlainText(): 功能:从 QTextEdit 文本框中获取用户输入的文本。toPlainText() 方法返回的是纯文本内容,不包含格式信息。...通过 setItem() 方法,我们将每条记录中的姓名和年龄填充到相应的行和列中。 6.4 使用 pandas 与 QTableWidget 在处理大量数据时,pandas 是一个非常强大的库。...data_frame.iat[row, col] iat 是 pandas 提供的一个方法,允许我们根据行号和列号来访问 DataFrame 中的某个具体值。...6.6 总结 在这一部分中,我们学习了如何使用 QTableWidget 来展示表格数据,并结合 pandas 来处理和展示从外部文件读取的数据。

    2K23

    快速提高Python数据分析速度的八个技巧

    可以看到,除了之前我们需要的一些描述性统计数据,该报告还包含以下信息: 类型推断:检测数据帧中列的数据类型。...直方图 相关性矩阵 缺失值矩阵,计数,热图和缺失值树状图 文本分析:了解文本数据的类别(大写,空格),脚本(拉丁,西里尔字母)和块(ASCII) 02 使用cufflinks绘制图表 上一个神器Pandas...%who:列出全部变量 在大型数据分析过程中,你是否遇到过忘记定义了哪些变量或者忘记某个变量是否赋值还是忘记了变量名甚至删除了赋值语句。...我们可以使用.fillna('*') 将所有缺失值替换为*,或者data.fillna(axis=1,method='ffill')来横向/纵向用缺失值前面的值替换缺失值,那么更多的异常值处理方法可以参阅...从而我们可以检查变量的值或继续进行操作。 而如果我们的代码发生了报错的话,该命令会直接定位到代码发生异常的位置,然后我们可以更方便的去处理代码,我们来看看 ?

    1K21

    从小白到大师,这里有一份Pandas入门指南

    它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...为了检查索引是否已经排序并对它排序,主要有两种方法: %%time >>> mi_df.sort_index() CPU times: user 34.8 ms, sys: 1.63 ms, total...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.7K30

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    df.sort_values("col1", inplace=True) 数据输入和输出 1. 利用值构造一个数据框DataFrame 在Excel电子表格中,值可以直接输入到单元格中。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...按值排序 Excel电子表格中的排序,是通过排序对话框完成的。 pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    从小白到大师,这里有一份Pandas入门指南

    它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...为了检查索引是否已经排序并对它排序,主要有两种方法: %%time >>> mi_df.sort_index() CPU times: user 34.8 ms, sys: 1.63 ms, total...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...为了检查索引是否已经排序并对它排序,主要有两种方法: %%time >>> mi_df.sort_index() CPU times: user 34.8 ms, sys: 1.63 ms, total...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.8K11

    Python从零开始第六章机器学习①逻辑回归

    在本节中,您将使用机器学习算法解决泰坦尼克号预测问题:Logistic回归。 Logistic回归是一种分类算法,涉及预测事件的结果,例如乘客是否能够在泰坦尼克号灾难中幸存。...清理数据 加载数据后,就可以清理数据了。 在泰坦尼克号数据集中,有许多列对于构建机器学习模型并不重要。 为此,我们使用以下代码删除数据集中的列。...检查数据集,您会看到Sex和Embarked的值是字符串类型,这时候需要先进行label encoder才能进一步完成。...清理数据集后,您现在可以将数据集拆分为两个不同的集合:一个用于训练集,另一个用于测试。...但在此之前,您需要将数据集分成两个数据框:一个包含所有用于预测的属性,另一个包含对象的标签。

    56020

    python数据处理 tips

    这可能是由于来自数据源的错误输入造成的,我们必须假设这些值是正确的,并映射到男性或女性。...注意:请确保映射中包含默认值male和female,否则在执行映射后它将变为nan。 处理空数据 ? 此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。...解决方案1:删除样本(行)/特征(列) 如果我们确信丢失的数据是无用的,或者丢失的数据只是数据的一小部分,那么我们可以删除包含丢失值的行。 在统计学中,这种方法称为删除,它是一种处理缺失数据的方法。...在该方法中,如果缺少任何单个值,则整个记录将从分析中排除。 如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。...在这种情况下,让我们使用中位数来替换缺少的值。 ? df["Age"].median用于计算数据的中位数,而fillna用于中位数替换缺失值。

    4.4K30

    初学者使用Pandas的特征工程

    问题是:在给定某些变量的情况下,要预测在不同城市的不同商店中存在的产品的销售情况。问题中包含的数据大多与商店和产品有关。...,并检查前几行以更好地理解它。...估算这些缺失的值超出了我们的讨论范围,我们将只关注使用pandas函数来设计一些新特性。 用于标签编码的replace() pandas中的replace函数动态地将当前值替换为给定值。...在此,每个新的二进制列的值1表示该子类别在原始Outlet_Type列中的存在。 用于分箱的cut() 和qcut() 分箱是一种将连续变量的值组合到n个箱中的技术。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。

    4.9K31

    Python与Excel协同应用初学者指南

    电子表格数据的最佳实践 在开始用Python加载、读取和分析Excel数据之前,最好查看示例数据,并了解以下几点是否与计划使用的文件一致: 电子表格的第一行通常是为标题保留的,标题描述了每列数据所代表的内容...这将在提取单元格值方面提供很大的灵活性,而无需太多硬编码。让我们打印出第2列中包含值的行的值。如果那些特定的单元格是空的,那么只是获取None。...可以在下面看到它的工作原理: 图15 已经为在特定列中具有值的行检索了值,但是如果要打印文件的行而不只是关注一列,需要做什么? 当然,可以使用另一个for循环。...另一个for循环,每行遍历工作表中的所有列;为该行中的每一列填写一个值。...除了Excel包和Pandas,读取和写入.csv文件可以考虑使用CSV包,如下代码所示: 图30 数据的最终检查 当数据可用时,通常建议检查数据是否已正确加载。

    17.4K20

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    今天我们重新盘点66个Pandas函数合集,包括数据预览、数值数据操作、文本数据操作、行/列操作等等,涉及“数据清洗”的方方面面。...df.sample(3) 输出: 如果要检查数据中各列的数据类型,可以使用.dtypes;如果想要值查看所有的列名,可以使用.columns。...df.shape 输出: (5, 2) 另外,len()可以查看某列的行数,count()则可以查看该列值的有效个数,不包含无效值(Nan)。...在对文本型的数据进行处理时,我们会大量应用字符串的函数,来实现对一列文本数据进行操作[2]。...如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。 例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。

    3.8K11

    数据分析 ——— pandas基础(三)

    接着之前的文章,在这里我们来看一些利用pandas处理文本数据,利用索引,loc, iloc,ix,属性选取数据 一、 处理文本数据 在这里我们用基本的序列、索引来进行字符串操作 先大致了解一下我们将要用到的函数...返回布尔值 18 isupper() 检查Series / Index中每个字符串中的所有字符是否大写。返回布尔值。...Series / Index中每个字符串中的所有字符是否小写,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否小写,返回布尔值 s = pd.Series(['tom', '...Series / Index中每个字符串中的所有字符是否大写,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否大写,返回布尔值 s = pd.Series(['Tom', '...Series / Index中每个字符串中的所有字符是否为数字,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否为数字,返回布尔值 s = pd.Series(['1', '

    1.3K20

    一看就会的Pandas文本数据处理

    文本数据类型 在pandas中存储文本数据有两种方式:object 和 string。...在pandas 1.0版本之前,object是唯一的文本类型,在一列数据中如果包含数值和文本等混合类型则一般也会默认为object。...文本拼接 文本拼接是指将多个文本连接在一起,基于str.cat()方法 比如,将一个序列的内容进行拼接,默认情况下会忽略缺失值,我们亦可指定缺失值 连接一个序列和另一个等长的列表,默认情况下如果有缺失值...,则会导致结果中也有缺失值,不过可以通过指定缺失值na_rep的情况进行处理 连接一个序列和另一个等长的数组(索引一致) 索引对齐 在索引对齐中,我们还可以通过参数join来指定对齐形式,默认为左对齐...文本提取 我们在日常中经常遇到需要提取某序列文本中特定的字符串,这个时候采用str.extract()方法就可以很好的进行处理,它是用正则表达式将文本中满足要求的数据提取出来形成单独的列。

    1.4K30
    领券