首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用过Excel,就会获取pandas数据框架和列

在Excel,我们可以看到、列和单元格,可以使用“=”号或在公式引用这些。...在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、和列简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供列(标题)名称列表。 df.shape 显示数据框架维度,在本例为45列。 图3 使用pandas获取列 有几种方法可以在pandas获取列。...要获取前三,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用和列交集。...接着,.loc[[1,3]]返回该数据框架第1和第4。 .loc[]方法 正如前面所述,.loc语法是df.loc[,列],需要提醒(索引)和列可能是什么?

19.1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas缺失处理

    在真实数据,往往会存在缺失数据。...pandas在设计之初,就考虑了这种缺失情况,默认情况下,大部分计算函数都会自动忽略数据集中缺失,同时对于缺失也提供了一些简单填充和删除函数,常见几种缺失操作技巧如下 1....默认缺失 当需要人为指定一个缺失时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...# 默认为0,表示去除包含 了NaN # axis=1,表示去除包含了NaN列 >>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...大部分运算函数在处理时,都会自动忽略缺失,这种设计大大提高了我们编码效率。

    2.6K10

    pandas删除某列有空_drop

    大家好,又见面了,我是你们朋友全栈君。 0.摘要 dropna()方法,能够找到DataFrame类型数据(缺失),将空所在/列删除后,将新DataFrame作为返回返回。...如果该行/列,非空元素数量小于这个,就删除该行/列。 subset:子集。列表,元素为或者列索引。...2.示例 创建DataFrame数据: import numpy as np import pandas as pd a = np.ones((11,10)) for i in range(len(a...)): a[i,:i] = np.nan d = pd.DataFrame(data=a) print(d) 按删除:存在空,即删除该行 # 按删除:存在空,即删除该行 print(...设置子集:删除第5、6、7存在空列 # 设置子集:删除第5、6、7存在空列 print(d.dropna(axis=1, how='any', subset=[5,6,7])) 原地修改

    11.6K40

    删除重复,不只Excel,Python pandas

    标签:Python与Excel,pandas 在Excel,我们可以通过单击功能区“数据”选项卡上“删除重复项”按钮“轻松”删除表重复项。确实很容易!...import pandas as pd df = pd.read_excel(‘D:\用户-1.xlsx’) 图2 快速观察上述小表格: 第1和第5包含完全相同信息。...第3和第4包含相同用户名,但国家和城市不同。 删除重复 根据你试图实现目标,我们可以使用不同方法删除重复项。最常见两种情况是:从整个表删除重复项或从列查找唯一。...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个重复。现在pandas将在“用户姓名”列检查重复项,并相应地删除它们。...如果我们指定inplace=True,那么原始df将替换为新数据框架,并删除重复项。 图5 在列表或数据表列查找唯一 有时,我们希望在数据框架列列表查找唯一

    6K30

    使用pandas筛选出指定列所对应

    pandas怎么样实现类似mysql查找语句功能: select * from table where column_name = some_value; pandas获取数据有以下几种方法...布尔索引 该方法其实就是找出每一符合条件真值(true value),如找出列A中所有等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...这个例子需要先找出符合条件所在位置 mask = df['A'] == 'foo' pos = np.flatnonzero(mask) # 返回是array([0, 2, 4, 6, 7])...数据提取不止前面提到情况,第一个答案就给出了以下几种常见情况:1、筛选出列等于标量,用== df.loc[df['column_name'] == some_value] 2、筛选出列属于某个范围内...df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)] 4、筛选出列不等于某个/些 df.loc[df['column_name

    19K10

    Pandas替换简单方法

    使用内置 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤一部分。...为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型列。 在这篇文章,让我们具体看看在 DataFrame 替换和子字符串。...当您想替换列每个或只想编辑一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)字符串...Pandas replace 方法允许您在 DataFrame 指定系列搜索,以查找随后可以更改或子字符串。

    5.5K30

    Pandas如何查找某列中最大

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某列中最大,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    pandasloc和iloc_pandas获取指定数据和列

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某列,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二 (2)读取第二 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过、列名称或标签来索引 iloc:通过、列索引位置来寻找数据 首先,我们先创建一个...(1)读取第二 # 索引第二标签是“1” data1 = data.loc[1] 结果: 备注: #下面两种语法效果相同 data.loc[1] == data.loc...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引、列索引位置[index, columns]来寻找 (1)读取第二 # 读取第二,与loc方法一样 data1...3, 2:4]第4、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 对于Excel来说,删除是一项常见任务。本文将学习一些从数据框架删除技术。...准备数据框架 我们将使用前面系列中用过“用户.xlsx”来演示删除。 图1 注意上面代码index_col=0?如果我们将该参数留空,则索引将是基于0索引。...使用.drop()方法删除 如果要从数据框架删除第三(Harry Porter),pandas提供了一个方便方法.drop()来删除。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除 图2 我们跳过了参数axis,这意味着将其保留为默认0或。因此,我们正在删除索引为“Harry Porter”。...这次我们将从数据框架删除带有“Jean Grey”,并将结果赋值到新数据框架。 图6

    4.6K20

    使用pandas的话,如何直接删除这个表格里面X是负数

    一、前言 前几天在Python白银交流群【空翼】问了一个pandas处理Excel数据问题,提问截图如下: 下图是他原始数据部分截图: 二、实现过程 看上去确实是两列,但是X列里边又暗藏玄机,如果只是单纯针对这一列全部是数值型数据进行操作...如果只是想保留非负数的话,而且剔除为X,【Python进阶者】也给了一个答案,代码如下所示: import pandas as pd df = pd.read_excel('U.xlsx') #...他想实现效果是,保留列、X和正数,而他自己数据还并不是那么工整,部分数据入下图所示,可以看到130-134情况。...顺利地解决了粉丝问题。其中有一代码不太好理解,解析如下: 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。 最后感谢粉丝【空翼】提问,感谢【Jun.】

    2.9K10

    改进 Elastic Stack 信息检索:混合检索

    Elasticsearch ®还具有强大词汇检索功能和丰富工具来组合不同查询结果。在本博客,我们介绍了混合检索概念,并探讨了 Elasticsearch 可用两种具体实现。...它应用于每种方法检索前 N ​​个文档集。如果任一方法该集中缺少文档,则该项设置为零。介绍倒数排名融合论文建议 k 为 60,并且没有讨论要检索多少个文档 N。...此外,我们想了解结果对这些参数选择有多敏感,以及最优是否可以在数据集和模型之间推广。这对于在零样本设置对方法有信心非常重要。...理论上,分数比例比率可以合并到α学习。...个分数最小和最大

    2.1K31

    pythonpandasDataFrame对和列操作使用方法示例

    pandasDataFrame时选取或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...,通过有前后索引形式, #如果采用data[1]则报错 data.ix[1:2] #返回第2第三种方法,返回是DataFrame,跟data[1:2]同 data['a':'b']...#利用index进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...[0,2]] #选择第2-4第1、3列 Out[17]: a c two 5 7 three 10 12 data.ix[1:2,2:4] #选择第2-3,3-5(不包括5)列 Out...github地址 到此这篇关于pythonpandasDataFrame对和列操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30
    领券