可视化分析是CV中常用的技巧,通过可视化分析,可以发现模型在学习过程中重点关注了图像中的哪部分区域,帮助我们debug模型学习过程中可能存在的问题。例如在图像分类任务中,可以通过可视化分析,来看模型最关注的图像区域是对于分类至关重要的关键实体,还是背景,进而推断模型目前的学习情况。
可视分析技术已经发展了近十年。在这些年间,人们研究了大量的可视分析方法和案例,发表了不少研究论文。然而,对于一些基本问题,人们依然没有明确的答案。例如,一个基本的可视分析流程是怎样的?一个可视分析系统应该包含哪几个组件?如何评价和比较不同的可视分析系统?在VAST’2014的一篇论文中[1],Sacha等人提出了一个可视分析模型,系统性的回答了以上问题。 如图1所示,他们的模型包含左边计算机的部分和右边人的部分。在计算机部分中,数据被绘制为可视化图表,同时也通过模型进行整理和挖掘。可视化图表既可以显示原始数
大家最诟病深度学习的一点就是理论基础不够系统,模型就像一个黑盒子,这就更加凸显了深度学习模型可视化的重要性了。
机器学习模型有强大而复杂的数学结构。了解其错综复杂的工作原理是模型开发的一个重要方面。模型可视化对于获得见解、做出明智的决策和有效传达结果至关重要。
在本篇博客中,我们将深入探讨 OpenAI Gym 高级教程,聚焦于强化学习模型的可解释性和可视化。我们将使用解释性工具和数据可视化方法,以便更好地理解模型的决策过程和性能。
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
在近20年的前端发展史中,前端经历了铁器时代(小前端),信息时代(大前端)以至现在的全能前端时代。经历了几个时代的沉淀之后,前端领域开始更加细分。
汽车共享”最早出现于上个世纪四十年代的瑞士,他们发明了“自驾车合作社”,后来日本、英国等国争相效仿,但都未形成规模。而今,共享经济通过互联网达到了一个新的高度,共享汽车项目则乘势如雨后春笋般涌现在全国多个城市,一些人看好,而一些人看衰
机器之心编译 参与:思源、刘晓坤 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展了 Scikit-Learn API 以允许我们监督模型的选择过程。简而言之,Yel
【新智元导读】神经网络模型的可视化是解决其黑箱问题的一个解决方案,但用于神经网络可视化的大多数工具集中在图像数据集上,这激发了 Facebook 和 Georgia Tech 一道开发了一款称为 ActiVis 的开发工具的研究,这是一个用于解释大规模神经网络模型和结果的交互式可视化系统。ActiVis 将用户指定的实例或实例子集如何激活神经元进行可视化,以帮助用户了解模型如何生成其预测。用户可以自由地定义具有原始数据属性、变换特征和输出结果的子集,从多个角度实现模型检查。 关于神经网络的“黑箱”问题已经
近年来, 深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展, 这些任务多以卷积神经网络为基础搭建识别模型, 训练后的模型拥有优异的自动特征提取和预测性能, 能够为用户提供“输入–输出”形式的端到端解决方案. 然而, 由于分布式的特征编码和越来越复杂的模型结构, 人们始终无法准确理解卷积神经网络模型内部知识表示, 以及促使其做出特定决策的潜在原因. 另一方面, 卷积神经网络模型在一些高风险领域的应用, 也要求对其决策原因进行充分了解, 方能获取用户信任. 因此, 卷积神经网络的可解释性问题逐渐受到关注. 研究人员针对性地提出了一系列用于理解和解释卷积神经网络的方法, 包括事后解释方法和构建自解释的模型等, 这些方法各有侧重和优势, 从多方面对卷积神经网络进行特征分析和决策解释. 表征可视化是其中一种重要的卷积神经网络可解释性方法, 能够对卷积神经网络所学特征及输入–输出之间的相关关系以视觉的方式呈现, 从而快速获取对卷积神经网络内部特征和决策的理解, 具有过程简单和效果直观的特点. 对近年来卷积神经网络表征可视化领域的相关文献进行了综合性回顾, 按照以下几个方面组织内容: 表征可视化研究的提起、相关概念及内容、可视化方法、可视化的效果评估及可视化的应用, 重点关注了表征可视化方法的分类及算法的具体过程. 最后是总结和对该领域仍存在的难点及未来研究趋势进行了展望.
AI 科技评论消息,1 月 16 日,百度 ECharts 团队发布旗下知名开源产品 ECharts 的最新 4.0 版本,并宣布品牌升级为「百度数据可视化实验室」(http://vis.baidu.com/)。除了这两大消息外,团队还正式发布深度学习可视化平台 Visual DL,以及其他一系列重量级产品,包括 ECharts GL 1.0 正式版,ZRender 4.0 全新版本,WebGL 框架 ClayGL 等。 百度数据可视化实验室的产品矩阵如下图所示,内容涵盖基础库、各种可视化产品以及应用产品。
本章节来初次使用tensorboard来可视化pytorch深度学习中的一些内容,主要可视化的内容包括:标量变化(模型损失、准确率等);权重值的直方图;特征图的可视化;模型图的可视化;卷积核的可视化。
选自Medium 机器之心编译 参与:侯韵楚、李泽南 神经网络在图像处理中应用广泛,但经常面临难以调整参数的问题。最近,来自 Merantix 的 Ryan Henderson(博士毕业于康奈尔大学)等人发布了一个免费开源的卷积神经网络可视化工具,让我们可以方便地观察神经网络在图像中的焦点,为模型优化提供了帮助。 Github(运行环境-Python3.5 或以上):https://github.com/merantix/picasso arXiv-Picasso:https://arxiv.org/abs
Amos软件是一种被广泛应用于结构方程模型(SEM)分析的数据建模软件,它具有许多独特的功能,例如可视化路径分析、交互式因素分析等。在本文中,我将会通过举例的方式,来详细介绍Amos软件的独特功能以及在实际情况下的应用。
随着数据量的快速增长和对数据洞察力的需求日益增强,数据可视化成为了数据科学和分析领域中至关重要的一部分。Python作为一种功能强大、灵活且易于学习的编程语言,拥有丰富的数据可视化库和工具,使得开发者能够轻松地创建出令人印象深刻的图形。
升级后的ECharts可视化类型更加丰富,操作更加便利,支持多种数据格式无需转换直接使用,特效更加绚丽。 近日,百度ECharts团队发布旗下知名开源产品EChart的最新4.0版本,并宣布品牌升级为“百度数据可视化实验室”。同时,团队还正式发布了深度学习可视化平台Visual,以及其他一系列重量级产品。 百度数据可视化实验室的产品包括基础库、各种可视化产品以及应用产品。 ECharts使用JavaScript实现的开源可视化库,可以流畅地运行在PC和移动设备上,兼容当前绝大部分浏览器,底层依赖轻量级的矢量
有学员向我提问,咨询有没有关于模型可视化的一些工具推荐。特意找了一下资料,这就给大家介绍一个非常好用的Python可视化工具-scikit-plot,专门用于模型结果的可视化展示,功能比较简单易懂。
深度学习开源框架众多,对于开发者来说其中有一个很硬的需求,就是模型结构和权重的可视化。使用过Caffe的同学都因为强大的Netscope可以离线修改实时可视化网络结构而暗爽,那其他的框架怎么样呢?
数据可视化参考流程 科学可视化的早期可视化流水线,描述了从数据空间到可视空间的映射,包含串行处理数据的各个阶段: 原始数据->数据分析->预处理数据->过滤->关注数据->映射->几何数据->绘制->图像数据 而后Card,Mackinlay,Shneiderman等人提出了信息可视化参考流程,后继几乎所有著名的信息科石化系统和工具都支持这个模型。 数据可视化设计的层次嵌套模型 第一层(问题刻画层):概括现实生活中用户遇到的问题; 第二层(抽象层):抽象相应数据类型的操作; 第三层(编码层):设计编码和
Navisworks是Autodesk公司开发的一款专业的三维协同软件,广泛应用于建筑、工程、制造等领域。它可以对各种三维模型进行组装、可视化和协作,以便更好地管理和协调项目进度。本文将介绍Navisworks软件的特色功能和使用方法,并以一个实例来演示Navisworks软件的使用流程,包括其模型组装、可视化、协作等环节的操作步骤。最后,本文还将对Navisworks软件的优点和不足进行探讨。
躺尸接近三个月的OpenAI博客终于有了更新,这次它为AI研究者带来的作品是“OpenAI Microscope”,中文译名OpenAI 显微镜。
互联网技术为交通行业的可视化带来了多样性的发展。从传统的二维平面变形图、二维SVG矢量图到如今的SVG三维矢量技术、BIM技术、GIS+BIM技术、 WebGL技术,甚至连AR、VR、MR等虚拟现实技术,也开始应用于交通领域的可视化发展方面。
在新增我们的统计可视化课程的时候,发现了贝叶斯分析,且其可视化结果也是应用非常广泛,本期推文就给大家简单介绍下Python和R语言中用于贝叶斯模型分析的好用的工具。
【导读】本文利用非参数化方法来可视化CNN模型,希望帮助理解CNN。 专知公众号转载已获知乎作者余俊授权。 原文地址: https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释。这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“
机器之心整理 参与:吴欣 据百度技术经理祖明的知乎文章介绍,2018 年 1 月 16 日,百度发布开源产品 ECharts(echarts.baidu.com)的最新大版本 4.0,新版本在产品的性能、功能、易用性等各个方面进行了全面提升。此外,百度还一起发布了 ECharts GL 1.0 正式版,ZRender 4.0 全新版本,WebGL 框架 ClayGL、深度学习框架 VisualDL 等数据可视化产品。祖明还提到,随着这些产品的发布,百度正式公布全新升级的数据可视化品牌----「百度数据可视化
导读:通过图形化手段清晰地传达数据,促进信息的传递与沟通,是数据可视化的基础要素,也是设计美学和功能相结合的具体表现形式。Davinci便是这样一款可视应用平台。在敏捷大数据(Agile BigData)理论的背景下,围绕“数据视图”和“可视组件”两个核心概念设计,支持多种可视化功能。Davinci具体的设计理念和功能特点都有什么呢?它又将怎么成长呢?让我们一起来阅读本文吧~
水利兴,五谷丰。水利作为国民经济稳定和谐的重要部分,不仅有防洪减灾、农业灌溉、城市供水调水、渔业外贸、旅游航运、生态环境等综合应用,水电资源也是至关重要的可持续能源之一。大坝与水库、水电站等水利枢纽相辅相成稳定着城市发展。而随着信息化的发展,结合物联网、5G、大数据等新兴技术形式的智慧水电站、智慧大坝应用,也给传统水利行业提供更大的价值体现,提升产业全面感知、共享整合、智慧管理。
在数字经济建设和数字化转型的浪潮中,数据可视化大屏已成为各行各业的必备工具。然而,传统的数据大屏往往以图表和指标为主,无法真实地反映复杂的物理世界和数据关系。为了解决这个问题,3D模型可视化和数字孪生技术应运而生,它们可以将真实世界的物理对象、过程或系统,以及它们之间的关系和相互作用,构建成虚拟的数字模型,并以立体、动态、交互的方式展示在数据大屏上,实现数据的可视化、可感知、可控制。
Navisworks是一款由Autodesk开发的三维协同和可视化软件,它可以帮助用户在建筑、工程和制造等领域中进行项目协调和监控。作为产品经理,我认为Navisworks具有以下四个优点:
ArcGIS 是一款被广泛应用于地理信息系统(GIS)的软件,它具有独特的功能,如数据可视化和分析、空间分析和可视化、3D 地图制作等。在本文中,我们将通过实际案例,举例说明 ArcGIS 的几个独特功能,并介绍其在实际应用中的价值。
以下是笔者见过的对可视化初学者们最友好的概括:数据可视化是数据视觉表现形式的科学技术研究,主要是借助图形化的手段来清晰有效地传达与沟通信息。但这绝不意味着数据可视化必须为实现其功能而去深究枯燥的绘图代码,亦或是为了使图画看上去高端绚丽而显得过于复杂。
PowerBI 虽然从某种意义上说只是一个制作报表的工具,但在制作报表的过程中,从简单的报表,到极为复杂的报表都有可能。
对一些因变量进行dummy variable转换。对大数值变量如引擎容量,已行驶的公里数进行log transformation。
2019年,“数字孪生”热度不断攀升,备受行业内外关注。各大峰会论坛将其作为热议主题,全球最具权威的IT研究与顾问咨询机构Gartner在2019年报告中将其列为十大战略科技发展趋势之一,GE、西门子、微软、阿里巴巴纷纷将其划入重点布局。
大数据时代,几乎每个企业都在追求数字化转型、数据化管理,上到公司管理层战略目标制定,下到一线业务同学的项目复盘汇报、甚至产品经理和开发的需求沟通,都需要数据的支撑,从过去的拍脑袋的定性决策,转向一切用数据说话的定量决策。从而,带来数据获取和分析需求爆发式的增长。
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第五讲模型可视化。 回顾之前内容: 谷歌教你学 AI -第一
可视化神经网络总是很有趣的。例如,我们通过神经元激活的可视化揭露了令人着迷的内部实现。对于监督学习的设置,神经网络的训练过程可以被认为是将一组输入数据点变换为可由线性分类器分离而表示的函数。所以,这一次,我打算通过利用这些(隐藏的)的表示来产生可视化,从而为这个训练过程带来更多内部细节。这种可视化可以揭示和神经网络性能相关的有趣的内部细节。
中国被世界称为“基建狂魔”,全球高层建筑数量位居首位。城市内部的各类业态,包括住宅小区、商业广场、办公楼乃至各类产业聚集体,都是一栋栋楼宇构建而成的,显然,城市的高效运行离不开楼宇的良好管理。在城市和经济发展的新常态之下,除了满足基本的空间需求外,人们开始延展出楼宇识别、感知、交互等个性化需求,楼宇开启了向智能的转变。
在传统的软件工程(Software 1.0)中,根据客户反馈调整产品的过程往往要求理解软件工作原理的和出现异常的原因。这些一般可以通过源代码检查与调试的方式获得。但是,假如你们的深度学习模型没有完全达到预期效果该怎么办?在深度学习模型上进行调试工作会比较困难,这是因为问题不在于数据或者理论框架而是在于模型的编码知识中。要使模型进入最终状态,你需要:
在深度学习中可视化模型的训练过程有助于我们分析模型的状态。可视化训练过程的库很多,我们将一些常用的库集成到 MMCV 中方便用户使用。在 MMCV 中使用这些库只需简单配置。在本文中将介绍这些库以及它们在 MMCV 中的使用方法。
一直以来,深度神经网络的可解释性都被大家诟病,训练一个神经网络被调侃为“炼丹”。所得的模型也像一个“黑盒”一样,给它一个输入,然后得到结果,却不知道模型是如何得出结论的,究竟学习到了什么知识。如果能将其训练或者推理过程可视化,那么可以对其更加深入的理解,目前深度神经网络可视化可以分为:
将神经网络可视化是非常有趣的。对于监督学习而言,神经网络的训练过程可以看做是学习如何将一组输入数据点转换为可由线性分类器进行分类的表示。本文我想利用这些(隐藏)表示进行可视化,从而更加直观地了解训练过程。这种可视化可以为神经网络的性能提供有趣的见解。
SMT(Surface Mounted Technology,表面贴片技术)指的是在印刷电路板 (Printed Circuit Board,PCB)基础上进行加工的系列工艺流程的简称,是电子组装行业里最流行的一种技术和工艺。SMT 目前发展已有 40 多年的历史,现已广泛的应用于通信、计算机、家电等行业。并在向高密度、高性能、高可靠性和低成本的方向发展。
数据可视化是关于数据视觉表现形式的科学技术研究,它的主要目标是将大量复杂的数据集提取为可视化图形,以便用户轻松地理解数据中的复杂关系。它经常与信息图形、统计图形和信息可视化等术语互换使用。
本文介绍基于TensorBoard工具,对tensorflow库构建的神经网络模型加以可视化,并对其训练过程中的损失函数(Loss)、精度指标(Metric)等的变化情况加以可视化的方法。
您是否曾经想过您的神经网络实际上是如何连接不同的神经元的?如果您可以可视化所设计的模型架构,那不是很好吗?如果您可以将模型架构下载为演示时可以使用的图像,那不是很好吗?如果所有这些都为“是”,那么您来对地方了。 在本文中,我将向你展示一个Ë xciting Python包/模块/库,可用于可视化Keras模型。无论是卷积神经网络还是人工神经网络,该库都将帮助您可视化所创建模型的结构。 Keras Visualizer是一个开源python库,在可视化模型如何逐层连接方面确实很有帮助。因此,让我们开始吧。
本人自由职业,运营AI开源项目https://github.com/CloudOrc/SolidUI。
领取专属 10元无门槛券
手把手带您无忧上云