首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

模拟-体素网格

(Voxel Grid Simulation)是一种计算机图形学和计算机模拟领域的技术,用于表示和处理三维空间中的物体或场景。它将三维空间划分为规则的立方体网格单元,每个单元称为体素(Voxel),类似于二维空间中的像素(Pixel)。

模拟-体素网格技术可以用于各种应用,包括虚拟现实(VR)、增强现实(AR)、游戏开发、医学图像处理、工程仿真等。它的主要优势在于能够提供更精细的物体或场景表示,以及更高的计算效率。

在虚拟现实和游戏开发中,模拟-体素网格可以用于实现真实感的物理模拟、碰撞检测、光照计算等。在医学图像处理领域,它可以用于重建三维医学图像、进行手术模拟和导航等。在工程仿真中,它可以用于模拟材料的物理特性、流体动力学、结构分析等。

腾讯云提供了一系列与模拟-体素网格相关的产品和服务,包括:

  1. 腾讯云图像处理(Image Processing):提供了丰富的图像处理功能,可以用于处理模拟-体素网格中的纹理、光照等。
  2. 腾讯云计算机视觉(Computer Vision):提供了强大的计算机视觉算法和工具,可以用于分析和处理模拟-体素网格中的图像和视频数据。
  3. 腾讯云弹性计算(Elastic Compute):提供了灵活的计算资源,可以用于进行模拟-体素网格的计算和渲染。
  4. 腾讯云存储(Cloud Storage):提供了可靠的存储服务,可以用于存储和管理模拟-体素网格中的数据和模型。
  5. 腾讯云人工智能(Artificial Intelligence):提供了丰富的人工智能算法和工具,可以用于模拟-体素网格中的智能分析和决策。

更多关于腾讯云相关产品和服务的详细信息,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 前沿 | 超越像素平面:聚焦3D深度学习的现在和未来

    想象一下,如果你正在建造一辆自动驾驶汽车,它需要了解周围的环境。为了安全行驶,你的汽车该如何感知行人、骑车的人以及周围其它的车辆呢?你可能会想到用一个摄像头来满足这些需求,但实际上,这种做法似乎效果并不好:你面对的是一个三维的环境,相机拍摄会使你把它「压缩」成二维的图像,但最后你需要将二维图像恢复成真正关心的三维图像(比如你前方的行人或车辆与你的距离)。在相机将周围的三维场景压缩成二维图像的过程中,你会丢掉很多最重要的信息。试图恢复这些信息是很困难的,即使我们使用最先进的算法也很容易出错。

    02

    论文简述 | Voxel Map for Visual SLAM

    在现代视觉SLAM系统中,从关键帧中检索候选地图点是一种标准做法,用于进一步的特征匹配或直接跟踪.在这项工作中,我们认为关键帧不是这项任务的最佳选择,因为存在几个固有的限制,如弱几何推理和较差的可扩展性.我们提出了一种体素图表示来有效地检索视觉SLAM的地图点.通过以光线投射方式对摄像机frustum进行采样来查询来自摄像机姿态的可见点,这可以使用有效的体素散列方法在恒定时间内完成.与关键帧相比,使用我们的方法检索的点在几何上保证落在摄像机的视野内,并且遮挡点可以在一定程度上被识别和去除.这种方法也很自然地适用于大场景和复杂的多摄像机配置.实验结果表明,我们的体素图与具有5个关键帧的关键帧图一样有效,并且在EuRoC数据集上提供了显著更高的定位精度(在RMSE平均提高46%),所提出的体素图表示是视觉SLAM中基本功能的一般方法,并且可广泛应用.

    02

    99行代码实现冰雪奇缘特效的「太极」再进化,胡渊鸣团队、快手等联合打造

    机器之心报道 机器之心编辑部 99 行代码实现《冰雪奇缘》特效的续集来了,太极编译器再次升级。 得益于计算机仿真技术的不断发展,我们能够在电脑中重建越来越逼真的现实世界,制作出《冰雪奇缘》等优秀的特效电影。 但逼真的场景、丰富的细节离不开超高精度的物理模拟,因此特效的每一帧几乎都是用经费烧出来的。 现代动画电影(包括《冰雪奇缘》等),经常使用基于物理的动画生产特效,丰富感官的体验。基于粒子的表示是其中常用的方法。场景越大,粒子就越多。比如,要模拟一个 300 米长的溃坝场景中的水,可能会需要数千万粒子,

    01

    重塑路侧BEV感知!BEVSpread:全新体素化暴力涨点(浙大&百度)

    基于视觉的路侧3D目标检测在自动驾驶领域引起了越来越多的关注,因其在减少盲点和扩大感知范围方面具有不可忽略的优势。而先前的工作主要集中在准确估计2D到3D映射的深度或高度,忽略了体素化过程中的位置近似误差。受此启发,我们提出了一种新的体素化策略来减少这种误差,称为BEVSpread。具体而言,BEVSpread不是将包含在截头体点中的图像特征带到单个BEV网格,而是将每个截头体点作为源,并使用自适应权重将图像特征扩展到周围的BEV网格。为了实现更好的特征传递性能,设计了一个特定的权重函数,根据距离和深度动态控制权重的衰减速度。在定制的CUDA并行加速的帮助下,BEVSpread实现了与原始体素化相当的推理时间。在两个大型路侧基准上进行的大量实验表明,作为一种插件,BEVSpread可以显著提高现有基于frustum的BEV方法。在车辆、行人和骑行人几类中,提升幅度为(1.12,5.26,3.01)AP。

    01

    ICML 2024 | 基于体素网格的药物设计

    今天为大家介绍的是来自Prescient Design, Genentech团队的一篇论文。作者提出了VoxBind,这是一种基于评分的3D分子生成模型,该模型以蛋白质结构为条件。作者的方法将分子表示为3D原子密度网格,并利用3D体素去噪网络进行学习和生成。作者将神经经验贝叶斯的形式扩展到条件设置,并通过两步程序生成基于结构的分子:(i) 使用学习到的评分函数,通过欠阻尼的Langevin MCMC从高斯平滑的条件分布中采样噪声分子,(ii) 通过单步去噪从噪声样本中估计出干净的分子。与当前的最先进技术相比,作者的模型更易于训练,采样速度显著更快,并且在大量的计算基准测试中取得了更好的结果——生成的分子更加多样化,表现出更少的空间碰撞,并且与蛋白质口袋结合的亲和力更高。

    01

    商汤提出手机端实时单目三维重建系统,实现逼真AR效果和交互

    商汤研究院和浙江大学 CAD&CG 国家重点实验室合作研发了一个手机端实时单目三维重建系统 Mobile3DRecon。与现有的基于 RGBD 的在线三维重建或离线生成表面网格的系统不同,该系统结合前端位姿跟踪结果,允许用户使用单目摄像头在线重建场景表面网格。在深度估计方面,提出结合多视图半全局匹配算法和深度神经网络优化后处理过程鲁棒地估计场景深度。在表面网格生成过程,本文提出的在线网格生成算法可以实时增量地融合关键帧深度到稠密网格中,从而重建场景表面。通过定性和定量的实验验证,所研制的单目三维重建系统能够正确处理虚拟物体与真实场景之间的遮挡和碰撞,在手机端实现逼真的 AR 效果和交互。

    03

    清华大学&英伟达最新|Occ3D:通用全面的大规模3D Occupancy预测基准

    自动驾驶感知需要对3D几何和语义进行建模。现有的方法通常侧重于估计3D边界框,忽略了更精细的几何细节,难以处理一般的、词汇表外的目标。为了克服这些限制,本文引入了一种新的3D占用预测任务,旨在从多视图图像中估计目标的详细占用和语义。为了促进这项任务,作者开发了一个标签生成pipeline,为给定场景生成密集的、可感知的标签。该pipeline包括点云聚合、点标签和遮挡处理。作者基于Waymo开放数据集和nuScenes数据集构造了两个基准,从而产生了Occ3D Waymo和Occ3D nuScene基准。最后,作者提出了一个模型,称为“粗略到精细占用”(CTF-Occ)网络。这证明了在3D占用预测任务中的优越性能。这种方法以粗略到精细的方式解决了对更精细的几何理解的需求。

    04

    事件相关电位ERP的皮层溯源分析

    脑电信号的皮层源分析已成为脑活动分析的重要工具。源分析的目的是重建头皮上的脑电图信号的皮层发生器(源)。源重建的质量取决于正问题的精度,进而也取决于反问题的精度。当使用适当的成像模态来描述头部几何形状,通过头皮上传感器位置的3D地图来确定精确的电极位置,并为头部模型的每种组织类型确定真实的导电性值时,可以获得准确的正解。这些参数一起有助于定义真实的头部模型。在这里,我们描述了重建记录在头皮上的脑电图信号的皮层发生器的必要步骤。我们提供了一个事件相关电位(ERPs)源重建的例子,在一个6个月大的婴儿执行的面部处理任务。我们讨论了使用不同ERP措施进行源分析所需的调整。提出的方法可以应用于研究不用年龄段受测者的不同认知任务。

    04
    领券