此前我曾在公众号推荐过不少正则表达式的相关工具与教程,以帮助大家掌握这个晦涩难懂,却在实际开发中颇为实用的编程神技。
实体:“能够独立存在的,作为一切属性的基础和万物本原的东西”。实体是属性赖以存在的基础,必须是自在的,也就是独立的、不依附于其他东西而存在的。
从大家 iPhone 手机中 Siri 到淘宝京东咨询客服的时候出现的智能客服,从小朋友喜欢玩的儿童机器人,到智能家居中的各种语音控制,背后都是聊天机器人。
AI时代,不同的行业都有自己的智能客服,比如银行智能客服、导购智能客服、后期服务支持智能客服等。训练客服机器人需要利用高质量、大量业务场景问答对(QA)作为语料进行训练,但是梳理问答对语料将会耗费大量人力成本。能否做到QA问答对的自动生成呢?答案是肯定的。
刚好最近在写学习源码整体架构系列,所以来回答下这个问题。先把 JS 基础打好。比如至少作用域、原型链、异步等要掌握好。数组、字符串、正则、对象等 API 一定要熟练,不熟练也可以查阅 MDN[1]文档,也可以看以下我推荐的文章熟悉一遍。【深度长文】JavaScript 数组所有 API 全解密[2]
原文链接:https://github.com/fighting41love/funNLP
机器之心报道 作者:Hecate He 来自微软、浙江大学等机构的研究者提出了一种 one-shot DNN 剪枝框架,无需微调即可从大型神经网络中得到轻量级架构,在保持模型高性能的同时还能显著降低所需算力。 大型神经网络学习速度很快,性能也往往优于其他较小的模型,但它们对资源的巨大需求限制了其在现实世界的部署。 剪枝是最常见的 DNN 压缩方法之一,旨在减少冗余结构,给 DNN 模型瘦身的同时提高其可解释性。然而,现有的剪枝方法通常是启发式的,而且只针对特定任务,还非常耗时,泛化能力也很差。 在一篇标题为
本文深入探讨了当前主流大模型高效微调方法——低秩适应(LoRA)。在代码编程、数学推理两个领域,对比了LoRA和全微调在不同数据规模下的性能。结果表明:LoRA在大多数情况下性能不如全微调,但作为一种正则化手段,LoRA能够保证在源领域上的性能(遗忘问题),并减少对新任务的学习成本。最后作者还给出了使用LoRA的最佳实践,来方便大家更有效地利用LoRA进行大模型微调。
今天,我要带大家深入了解一项关于大型语言模型(LLMs)的研究,这是由亚利桑那州立大学的Amir Saeidi、Shivanshu Verma和Chitta Baral三位专家带来的前沿成果。他们的最新论文《Insights into Alignment: Evaluating DPO and its Variants Across Multiple Tasks》为我们揭开了直接偏好优化(DPO)及其衍生方法的神秘面纱,这些方法在优化模型以符合人类偏好方面展现出了巨大潜力。
每年,全球最顶尖的NLP研究者们会在这两个大会上展示最前沿的NLP科研成果。然而,动辄上千篇的论文却令很多关注NLP领域最新动态的小伙伴望而却步。
虚假的统计线索在这几年已经逐渐引起了人们的关注,比如去年被广泛讨论的BERT是如何在NLI任务中利用数据集中的词汇统计线索来做出更可能是正确的预测,比如带有"not"的判断更可能是正确的。
大家都知道NLP近几年非常火,而且发展也特别快。那些耳熟的BERT、GPT-3、图神经网络、知识图谱等技术实际上也就是这几年发展起来的,特别像图神经网络在这两年间取得了飞速的发展。 我们正处在信息爆炸的时代、面对每天铺天盖地的新的网络资源和论文、很多时候我们面临的问题并不是缺资源,而是找准资源并高效学习。但很多时候你会发现,花费大量的时间在零零散散的内容上,但最后发现效率极低,浪费了很多宝贵的时间。 为了迎合大家学习的需求,我们重磅推出了《自然语言处理训练营》(一定要看到最后),主要有两个目的: 1. 对
作者:肖仰华 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。 主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用。融合
肖仰华 复旦大学教授 复旦大学计算机科学技术学院,副教授,博士生导师,上海市互联网大数据工程技术中心副主任。主要研究方向为大数据管理与挖掘、知识库等。 大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的“喂养”下,人工智能技术获得了前所未有的长足进步。其进展突出体现在以知识图谱为代表的知识工程以及深度学习为代表的机器学习等相关领域。随着深度学习对于大数据的红利消耗殆尽,深度学习模型效果的天花板日益迫近。另一方面大量知识图谱不断涌现,这些蕴含人类大量先验知识的宝库却尚未被深度学习有效利用
大家都知道NLP近几年非常火,而且相关技术发展也特别快,像BERT、GPT-3、图神经网络、知识图谱等技术被大量应用于项目实践中,这也推动了NLP在产业中的持续落地,以及行业对相关人才的需求。于是很多人欲转行NLP。 但是最近有同学私信我,NLP很难学,这条路能坚持走吗? 对于这位朋友的问题,我想从两方面开始回答。 NLP学起来不容易 01 很多大多数欲从事NLP相关工作的同学,往往都是通过自学的方式来进行学习,但是这样很明显的问题是: 1. 虽然学习了解了很多算法模型,但是技术深度和宽度的理解是比较薄
关于正则表达式替换,前面我写过一个应用: python2代码搬运到python3要改很多print? 试试用pyCharm的正则表达式替换 其实这里的替换已经使用了分组的思
社区问答系统,是一种基于web的应用,主要帮助用户从社区中寻找复杂的,与上下文相关的问题答案。
关键词:内在/外在评价,超参数在类推(analogy)评估中的作用,人类判别和词向量距离间的相关性,根据上下文消歧,窗口(Window)分类。
NLP (Natural Langunge Possns,自然语言处理)是计算机科学领域以及人工智能领域的一个重要的研究方向,它研究用计算机来处理、理解以及运用人类语言(如中文、英文等),达到人与计算机之间进行有效通讯。所谓“自然”乃是寓意自然进化形成,是为了区分一些人造语言,类似C++、Java 等人为设计的语言。
来源:中国大数据 本文为你介绍RedditSota 统计的各种机器学习任务的最顶级研究成果(论文)。 该 GitHub 库提供了所有机器学习问题的当前最优结果,并尽最大努力保证该库是最新的。如果你发现某个问题的当前最优结果已过时或丢失,请作为问题提出来(附带:论文名称、数据集、指标、源代码、年份),我们会立即更正。 这是为所有类型的机器学习问题寻找当前最优结果的一次尝试。我们都无法独自完成,因此希望每一位读者参与进来。如果你发现了一个数据集的当前最优结果,请提交并更新该 GitHub 项目。 监督学习 一、
目录 不要这样学习JavaScript 本课程资源 1~2周(简介,数据类型,表达式和操作符) 3~4周(对象,数组,函数,DOM,jQuery) JavaScript终极编辑器:WebStorm 第一个项目-动态问答应用 5~6周(正则表达式,Window对象,事件,jQuery) 7周,可延长到8周(类,继承,HTML5) 继续提升 一些鼓励的话 既然你找到这篇文章来,说明你是真心想学好JavaScript的。你没有想错,当今如果要开发现代网站或web应用(包括互联网创业),都要学会JavaScript
同时评估了生成图像的质量和多样性 仅评估图像生成模型,没有评估生成图像与原始图像之间的相似度,不能保证生成的使我们想要的图像
但在人工构建的标准的神经网络中,所使用的计算量随着输入的大小而增长,与所学习问题的复杂性无关。
选自GitHub 机器之心整理 参与:黄小天、蒋思源 今日,机器之心小编在 Github 上发现了一个良心项目:RedditSota 统计了各种机器学习任务的最顶级研究成果(论文),方便大家索引查阅。机器之心对此项目做了介绍。 项目地址:https://github.com//RedditSota/state-of-the-art-result-for-machine-learning-problems 该 GitHub 库提供了所有机器学习问题的当前最优结果,并尽最大努力保证该库是最
为了研究像Stack Overflow这样的社区问答(CQA)平台,人们提出了各种数据挖掘任务。这些任务之间的相关性通过多任务学习(MTL)为彼此提供了有用的学习信号。然而,由于这些任务的高度异质性,很少有现有的工作能够在一个统一的框架中共同解决它们。为了解决这一难题,我们开发了一种基于多关系图的MTL模型——异构多任务图同构网络(Heterogeneous Multi-Task graph Isomorphism Network, HMTGIN),该模型有效地解决了异构CQA任务。在每次训练前向传递中,HMTGIN通过图同构网络的扩展和跳跃连接嵌入输入的CQA论坛图。嵌入然后在所有特定任务的输出层共享,以计算各自的损失。此外,利用两个基于任务关系领域知识的跨任务约束对联合学习进行正则化。在评估中,嵌入在不同的任务特定的输出层之间共享,以做出相应的预测。据我们所知,HMTGIN是第一个能够从多关系图的角度处理CQA任务的MTL模型。为了评估HMTGIN的有效性,我们从Stack Overflow中构建了一个具有200多万个节点的大规模多关系图CQA数据集。大量实验表明: (1) HMTGIN在5个任务上优于所有基线; (2) 提出的MTL策略和跨任务约束具有显著优势。
大数据文摘授权转载自夕小瑶的卖萌屋 作者:炼丹学徒 近来,AI领域迎来各个领域的大突破,ChatGPT展现出强大的语言问答能力和推理能力,然而作为一个自然语言模型,它无法处理视觉信息。 与此同时,视觉基础模型如Visual Transformer或者Stable Diffusion等,则展现出强大的视觉理解和生成能力。 Visual Transformer将ChatGPT作为逻辑处理中心,集成若干视觉基础模型,从而达到如下效果: 视觉聊天系统Visual ChatGPT可以接收和发送文本和图像 提供复杂的
项目地址:https://github.com//RedditSota/state-of-the-art-result-for-machine-learning-problems
该 GitHub 库提供了所有机器学习问题的当前最优结果,并尽最大努力保证该库是最新的。如果你发现某个问题的当前最优结果已过时或丢失,请作为问题提出来(附带:论文名称、数据集、指标、源代码、年份),我们会立即更正。
导读:智能问答系统是自然语言处理的一个重要分支。今天我们将利用分词处理以及搜索引擎搭建一个智能问答系统。 本文经授权转自公众号CSDN(ID:CSDNnews)
近年来,聊天机器人技术及产品得到了快速的发展。聊天机器人作为人工智能技术的杀手级应用,发展得如火如荼,各种智能硬件层出不穷。
AI 科技评论按:当前,整个人工智能领域对自然语言处理技术的热情可谓空前高涨。一方面,这是由于借着深度学习的东风,计算机在各种自然语言处理任务中的表现有了突飞猛进的提高;另一方面,人们生活中大量的信息检索、语音识别、文本分析等应用对粒度更细、精度更高的专用自然语言模型提出了越来越高的要求。可以预见,随着信息时代数据量的不断增长以及人类社会中语料资源的不断丰富,自然语言处理研究将不断面临新的挑战。
今天,给大家推荐一本还未完成的深度学习书籍——《深度学习500问》。为什么要推荐一本未完成的书?
最近在 github 发现了一个有趣的项目,《深度学习500问》,由川大一名优秀毕业生创建。这是一个整合 AI 相关知识的项目,通过广大网友的集思广益, 形成内容充实,覆盖全面的 AI 相关知识文集。
摘要:命名实体识别是从文本中识别具有特定类别的实体,例如人名、地名、机构名等。命名实体识别是信息检索,查询分类,自动问答等问题的基础任务,其效果直接影响后续处理的效果,因此是自然语言处理研究的一个基础问题。 引言 命名实体识别(Named Entity Recognition,后文简称NER)是指从文本中识别具有特定类别的实体(通常是名词),例如人名、地名、机构名、专有名词等。命名实体识别是信息检索,查询分类,自动问答等问题的基础任务,其效果直接影响后续处理的效果,因此是自然语言处理研究的一个基础问题。 传
导读:神奇的网站有很多,今天推荐11个和学习有关的,而且都是免费的,希望对大家有所帮助。
今天要给大家在推荐 Github 上一个优质的中文 NLP 工具和资源集合项目——funNLP,已经获得了 5.3k Stars,1k+ Forks。
2012年谷歌首次提出“知识图谱”这个词,由此知识图谱在工业界也出现得越来越多,对于知识图谱以及相关概念的理解确实也是比较绕。自己在研究大数据独角兽Palantir之后开始接触知识图谱,也算对其有了一定了解,这里从三个角度总结一下怎么去理解知识图谱。
前几天在Python白银交流群【凡人不烦人】问了一个Python列表处理的问题,提问截图如下:
今天,营长要给大家推荐一本还未完成的深度学习书籍——《深度学习500问》。为什么要推荐一本未完成的书?
原文地址:https://github.com/fighting41love/funNLP
【新智元导读】如何有效训练RNN是一个活跃的研究领域,有很多方法,但还没有哪种表现出了明显的优势,因此也让今天要介绍的这项工作值得注意。来自ASAPP公司和MIT的两位研究人员提出了一种名为“简单循环单元”(Simple Recurrent Unit,SRU)的结构,对现有门控单元做了调整,简化了状态计算的过程,从而展现出了与CNN、注意力和前馈网络相同的并行性。实验结果表明,SRU训练速度与CNN一样,并在图像分类、机器翻译、问答、语音识别等各种不同任务中证明了有效性。 项目已经开源:https://gi
颜萌 李林 编译整理 量子位 出品 | 公众号 QbitAI 有很多种方法可以了解机器学习。你可以去听课,也可以看视频教程,甚至博客,知乎问答都可以是你的选择。 还有没有更酷的玩法? △ 手机上展示的
远程监督关系抽取方法虽然可以使用知识库对齐文本的方法得到大量标注数据,但是其中噪声太多,影响模型的训练效果。基于 bag 建模比基于句子建模能够减少噪声的影响,但是仍然无法克服 bag 全部是错误标注的情形。
前一段时间,Sebastian Ruder 介绍了他心中 10 个最有影响力的想法,并且每一个都提供了具体论文与核心思想。正如 Ruder 所说,他的清单必然是主观的,主要涵盖了迁移学习和泛化相关的想法。其中有的想法在过去一年非常受关注,大家围绕这些完美的观点展开了很多研究工作与实践。而有的想法并不是当前趋势,不过它们有可能在未来变得流行。因此,机器之心在 Ruder 介绍的基础上,重点关注今年的前沿趋势,并推荐一些真正好用的 NLP 新工具。
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。
金三银四很快就到了,铁子们做好跳槽拿高薪的准备了吗? 回想去年的算法岗,可谓是从灰飞烟灭到人间炼狱。之后的趋势都变成了这样:转行的开始转行,换专业的开始换专业。 于是很多人欲转行NLP,原因是NLP技术近几年发展非常快,像BERT、GPT-3、图神经网络、知识图谱等技术被大量应用于项目实践中,这也推动了NLP在产业中的持续落地,以及行业对相关人才的需求。 但是最近有粉丝私信我,NLP很难学,这条路能坚持走吗? 对于这位朋友的问题,我想从两方面开始回答。 NLP学起来不容易 01 很多大多数欲从事N
Kaspersky Cyberthreat real-time map 想体验科技宅的快感嘛?一个利用卡巴斯基杀毒软件检测到的病毒数据绘制地图的网站,有一种拥有世界的感觉~
领取专属 10元无门槛券
手把手带您无忧上云