首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    A full data augmentation pipeline for small object detection based on GAN

    小物体(即32×32像素以下的物体)的物体检测精度落后于大物体。为了解决这个问题,我们设计了创新的体系结构,并发布了新的数据集。尽管如此,许多数据集中的小目标数量不足以进行训练。生成对抗性网络(GAN)的出现为训练体系结构开辟了一种新的数据增强可能性,而无需为小目标注释巨大数据集这一昂贵的任务。 在本文中,我们提出了一种用于小目标检测的数据增强的完整流程,该流程将基于GAN的目标生成器与目标分割、图像修复和图像混合技术相结合,以实现高质量的合成数据。我们的流水线的主要组件是DS-GAN,这是一种基于GAN的新型架构,可以从较大的对象生成逼真的小对象。实验结果表明,我们的整体数据增强方法将最先进模型的性能提高了11.9%AP@。在UAVDT上5 s和4.7%AP@。iSAID上的5s,无论是对于小目标子集还是对于训练实例数量有限的场景。

    02

    基于激光雷达增强的三维重建

    尽管运动恢复结构(SfM)作为一种成熟的技术已经在许多应用中得到了广泛的应用,但现有的SfM算法在某些情况下仍然不够鲁棒。例如,比如图像通常在近距离拍摄以获得详细的纹理才能更好的重建场景细节,这将导致图像之间的重叠较少,从而降低估计运动的精度。在本文中,我们提出了一种激光雷达增强的SfM流程,这种联合处理来自激光雷达和立体相机的数据,以估计传感器的运动。结果表明,在大尺度环境下,加入激光雷达有助于有效地剔除虚假匹配图像,并显著提高模型的一致性。在不同的环境下进行了实验,测试了该算法的性能,并与最新的SfM算法进行了比较。

    01

    怎么使用阿里巴巴矢量图标库图文教程

    最近好久没写文章了,不为别的,就因为上周五晚上网站服务器被攻击了,原因未知,无论是百度统计还是腾讯云CDN流量情况都还算正常,跟腾讯客服沟通到凌晨,问题依旧没有解决,从而导致很多用户的主题配置无法访问,对此深感抱歉,周六晚上,请求次数已经达到了500W+,但是其他信息都是正常的,比如流量统计,来访名单等等,后来实在没有办法,把主题都改成本地校验,重新上传至应用中心,最终到晚上九点多,我更换了数据库端口号,设置了远程数据库,才算终止,当然我并不能确定是我弄好的还是不再攻击了,这都不重要,重要的是,要时时刻刻做好备份,确保数据库不会丢失,嗐,无奈啊~~~

    06
    领券