首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

池和任务的重叠之间的差异

是指在计算资源管理中,池和任务之间的不同概念和作用。

池(Pool)是指一组可供分配的计算资源的集合。通常,一个池包含多个计算节点或虚拟机实例,可以用来执行任务。池的作用是提供计算资源的集中管理和分配,以满足任务的需求。池可以根据任务的类型、优先级等因素进行调度和分配,以实现高效的资源利用。

任务(Task)是指需要执行的计算操作或作业。任务可以是一个程序、一个函数、一个脚本等,需要计算资源来执行。任务可以被分配到池中的计算节点上进行执行。任务的作用是描述需要完成的具体计算操作,并通过池的调度分配机制来实现任务的执行。

池和任务的重叠是指在一些计算框架或模型中,池的计算节点可以同时执行多个任务,即任务之间存在重叠。这种重叠可以提高计算资源的利用率和系统的并行度,从而加快任务的执行速度和整体系统的吞吐量。例如,采用任务并行的方式,可以同时执行多个相互独立的任务,以提高计算效率。

差异在于,池和任务的重叠并不是所有计算模型或框架都支持的特性。某些计算模型或框架可能采用串行的方式执行任务,即一个任务执行完毕后再执行下一个任务,这种情况下不存在任务的重叠。而一些并行计算模型或框架,如并行计算模型、分布式计算框架等,通常支持任务的重叠,以实现更高效的计算和处理能力。

总结起来,池和任务的重叠之间的差异在于概念和作用上的区别,以及是否支持任务的并行执行。池提供计算资源的集中管理和分配,而任务描述具体的计算操作,并通过池的调度分配机制来实现任务的执行。任务的重叠是指多个任务可以同时在池的计算节点上执行,从而提高计算效率和系统的并行度。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Genome Biology | VIPER:在单细胞RNA测序中为精确的基因表达恢复进行保留变异的插补

    今天给大家介绍密歇根大学的Zhou Xiang教授等人发表在Genome Biology上的一篇文章 “VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies”。本文开发了一种方法,VIPER,在单细胞RNA测序研究中插补零值,以促进在单细胞水平上准确的转录组测量的实现。VIPER基于非负稀疏回归模型,并能够逐步推断一组稀疏的局部邻域细胞,这些细胞最能有效预测用于插补的细胞的表达水平。VIPER的一个关键特征是它保存基因表达变异的细胞的能力。几个精心设计的基于真实数据的分析实验说明了VIPER的优点。

    01

    Nature neuroscience:精神疾病脑异常的局部、回路和网络异质性

    摘要:典型的病例对照研究往往忽略了精神疾病患者的个体异质性,这种研究依赖于群体均值比较。在此,我们对1294例诊断为6种疾病(注意缺陷/多动障碍、自闭症谱系障碍、双相情感障碍、抑郁症、强迫症和精神分裂症)的患者和1465例匹配对照患者的灰质体积(GMV)异质性进行了全面、多尺度的表征。规范模型表明,个人对区域GMV预期的偏差是高度异质性的,在同一诊断的人群中,影响同一地区的<7%。然而,在多达56%的病例中,这些偏差嵌入在共同的功能电路和网络中。显着-腹侧注意系统与其他系统有选择性地涉及抑郁症、双相情感障碍、精神分裂症和注意缺陷/多动障碍。因此,相同诊断的病例之间的表型差异可能源于特定区域偏差的异质定位,而表型相似性可能归因于共同功能回路和网络的功能障碍。

    03

    遮挡重叠场景下|基于卷积神经网络与RoI方式的机器人抓取检测

    抓取物体堆叠和重叠场景中的特定目标是实现机器人抓取的必要和具有挑战性的任务。在本文中,我们提出了一种基于感兴趣区域(RoI)的机器人抓取检测算法,以同时检测目标及其在物体重叠场景中的抓取。我们提出的算法使用感兴趣区域(RoIs)来检测目标的分类和位置回归。为了训练网络,我们提供了比Cornell Grasp Dataset更大的多对象抓取数据集,该数据集基于Visual Manipulation Relationship Dataset。实验结果表明,我们的算法在1FPPI时达到24.9%的失误率,在抓取我们的数据集时达到68.2%的mAP。机器人实验表明,我们提出的算法可以帮助机器人以84%的成功率掌握多物体场景中的特定目标。

    01

    事件相关功能磁共振波谱fMRS

    质子磁共振波谱(MRS)是一种非侵入性脑成像技术,用于测量不同神经化学物质的浓度。“单体素”MRS数据通常在几分钟内采集,然后在时间上平均单个瞬态来测量神经化学物质的浓度。然而,这种方法对神经化学物质的快速时间动态不敏感,包括那些反映与感知、认知、运动控制和最终行为相关的神经计算功能变化的神经化学物质。这篇综述讨论了功能MRS (fMRS)的最新进展,现在能够获得神经化学物质的事件相关测量。事件相关fMRS将不同的实验条件呈现为一系列混合的试次。关键的是,这种方法允许以秒级的时间分辨率获得光谱。作者们提供了事件相关的任务设计,MRS序列的选择,分析管道以及事件相关fMRS数据适当解释的全面用户指南。研究者们通过检查用于量化GABA(大脑中的主要抑制性神经递质)动态变化的范式,提出了各种技术考量。总的来说,研究者提出,尽管还需要更多的数据,但事件相关fMRS可以用于测量神经化学物质的动态变化,其时间分辨率与支持人类认知和行为的计算相关。

    05

    成年期人类大脑功能网络的重叠模块组织

    已有研究表明,作为人类大脑基本特征的大脑功能模块化组织会随着成年期的发展而发生变化。然而,这些研究假设每个大脑区域都属于一个单一的功能模块,尽管已经有趋同的证据支持人类大脑中功能模块之间存在重叠。为了揭示年龄对重叠功能模块组织的影响,本研究采用了一种重叠模块检测算法,该算法不需要对年龄在18 - 88岁之间的健康队列(N = 570)的静息态fMRI数据进行事先了解。推导出一系列的测量来描述重叠模块结构的特征,以及从每个参与者中识别出的重叠节点集(参与两个或多个模块的大脑区域)。年龄相关回归分析发现,重叠模度和模块相似度呈线性下降趋势。重叠节点数目随年龄增长而增加,但在脑内的增加并不均匀。此外,在整个成年期和每个年龄组内,节点重叠概率始终与功能梯度和灵活性呈正相关。此外,通过相关和中介分析,我们发现年龄对记忆相关认知表现的影响可能与重叠功能模块组织的变化有关。同时,我们的研究结果从大脑功能重叠模块组织的角度揭示了与年龄相关的分离减少,这为研究成年期大脑功能的变化及其对认知表现的影响提供了新的视角。

    02

    人脑hub枢纽和功能连接的时间动态性

    神经成像技术观察到大脑网络连接的枢纽hub,普遍认为枢纽对建立和维持一个功能平台至关重要,在这个平台上可以发生有认知意义和高效的神经元交流。然而,枢纽是静态的(即大脑区域始终是枢纽),还是这些属性会随时间变化(即大脑区域的枢纽波动),我们知之甚少。为了解决这个问题,我们引入了两个新的方法概念,脑连接流和节点惩罚最短路径,然后应用于时变功能连接fMRI BOLD数据。我们表明,激活的枢纽以一种非平凡的方式随时间而变化,枢纽的活动依赖于研究的时间尺度。激活的枢纽数量中较慢的波动超过了预期的程度,这主要是在皮层下结构检测到的。此外,我们观察到枢纽活动的快速波动主要存在于默认模式网络中,这表明大脑连接中的动态事件。我们的结果表明,连接枢纽的时间行为是一个多层次和复杂的问题,必须考虑到特定方法对时变连接性的时间敏感性的特性。我们讨论的结果与正在进行的讨论有关,即静息大脑中存在离散和稳定状态,以及网络枢纽在为神经元跨时间通信提供支架方面的作用。

    00

    Integrated Recognition, Localization and Detection using Convolutional Networks

    我们提出了一个使用卷积网络进行分类、定位和检测的集成框架。我们认为在一个卷积网络中可以有效地实现多尺度和滑动窗口方法。我们还介绍了一种新的深度学习方法,通过学习预测目标的边界来定位。然后,为了增加检测的置信度,对边界框进行累积而不是抑制。我们证明了使用一个共享网络可以同时学习不同的任务。该集成框架是ImageNet Large scale evisual Recognition Challenge 2013 (ILSVRC2013)定位任务的获胜者,在检测和分类任务上获得了非常有竞争力的结果。在比赛后的工作中,我们为检测任务建立了一个新的技术状态。最后,我们从我们最好的模型中发布了一个名为OverFeat的特性提取器。

    03

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    现有的深度卷积神经网络(CNNs)需要一个固定大小的输入图像(如224×224)。这一要求是“人为的”,可能会降低对任意大小/尺度的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池化策略,“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP-net,可以生成固定长度的表示,而不受图像大小/比例的影响。金字塔池对物体变形也有很强的鲁棒性。基于这些优点,SPP-net一般应改进所有基于cnn的图像分类方法。在ImageNet 2012数据集中,我们证明了SPP-net提高了各种CNN架构的准确性,尽管它们的设计不同。在Pascal VOC 2007和Caltech101数据集中,SPP-net实现了最先进的分类结果使用单一的全图像表示和没有微调。在目标检测中,spp网络的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102×,而在Pascal VOC 2007上达到了更好或相近的精度。在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中,我们的方法在所有38个团队中目标检测排名第二,图像分类排名第三。本文还介绍了本次比赛的改进情况。

    02

    NeuroImage:磁共振3D梯度回波磁化转移序列同时对铁和神经黑色素进行成像

    早期帕金森病(PD)的诊断仍然是临床上的一大挑战。以往的研究仅用黑质(SN)中的铁、神经肽(NM)或黑体-1(N1)征本身并不能为这些方法的临床应用提供足够高的诊断性能。本研究的目的是利用单个三维磁化传递对比(MTC)梯度回波序列提取代表整个SN的NM复合体体积、铁含量和体积,以及N1征作为潜在的互补成像生物标志物,并评估它们在早期PD中的诊断性能和临床相关性。对40例早期特发性帕金森病患者和40例年龄、性别匹配的健康对照(HCS)进行3T扫描。使用动态编程(DP)边界检测算法半自动地确定NM边界(代表SN部致密区(SNPC)和脑桥臂旁色素神经核)和铁边界(代表总SN(SNPC和SN网状部))。受试者操作特性分析用于评估这些成像生物标志物在早期帕金森病诊断中的作用。应用相关分析研究这些影像指标与临床评分的关系。我们还引入了NM和总铁重叠体积的概念,以证明NM相对于含铁SN的损失。此外,所有80例患者均独立评估N1征象。PD组SN中NM和SN体积低于HCS组,而SN中铁含量高于HCS组。有趣的是,双侧N1信号缺失的帕金森病患者的铁含量最高。单项测量的两个半球的平均值的曲线下面积(AUC)值为:NM复合体体积为0.960;SN总体积为0.788;SN铁含量为0.740;N1标志为0.891。通过二元Logistic回归将NM复合体体积与以下测量中的每一项相结合,得到了右侧和左侧的平均0AUC值:总铁含量为0.976;总SN体积为0.969,重叠体积为0.965,N1符号为0.983。我们发现SN体积与UPDRS-III呈负相关(R2=0.22,p=0.002)。虽然N1标志表现良好,但它不包含任何有关铁含量或NM数量的信息,因此,将该标志与NM和RON测量结合起来,可以更好地解释当N1标志在PD受试者中消失时发生的情况。总之,从单个MTC序列得出的NM复合体体积、SN体积、铁含量和N1征的组合为理解和诊断早期PD提供了补充信息。

    00

    Cytoscape插件3:Enrichment Map(1)

    早期的基因列表解释依赖于选择一系列高得分的基因,然后建立相当主观奇怪的关系。富集分析是一个自动的,基于严格的统计学的方法来分析和解释很大的基因列表,使用的是先验知识。富集分析来评估输入的基因列表在一个已知功能基因集的上调或下调情况。如果一个基因列表中的基因在这个已知功能集中出现的基因数目显著很多,这很可能预示这,这个生物学过程在作者研究的状况下扮演着重要角色。这个分析可以被其他已知的功能基因集重复,这个功能基因集可能数以千计。 过去几年中,有超过60种富集分析方法和工具出现。他们的主要区别在于 -(a)已知功能基因集的数据库不一样 -(b)用来评估富集的统计学方法不一样。 在接下来的几个部分,我们简要review 基因富集已经存在的几种方法,主要考虑到两个方法。 大多数的富集工具都是来自于GO解释,因为它们对大多数生物来说容易获取,并且覆盖的基因数很多,另外,还有其他一些功能基因集存在,除了GO也还有其他一些工具。功能基因集可以基于他们参与的代谢过程或信号通路来进行定义(比如KEGG,Reactome),也可以由基因表达谱调节的目标基因定义(比如mircoRNA,转录因子),也可以由蛋白质特征定义(比如结构域,染色体位置,与某种疾病的联系,刺激因子,或基因扰动等)。多个来源的功能基因集被一些像MSigDB或WhichGenes收集。不是所有的生物被功能基因集覆盖了,并且很多工具值支持特定的生物。 决定富集的统计学方法要么是基于阈值要么是基于全分布。基于阈值的方法需要用户输入排名靠前的不连续的基因列表,这需要设定一个基于统计学的基因得分阈值。基于超几何分布的Fisher‘s精确单尾检验是阐释这个问题的第一个方法,并且会继续成为这种类型最常使用的方法。这些方法对自然非连续分布列表很有用,但是当对连续的基因得分评判时就有缺点了。尤其,结果如果对阈值的选择不稳定,并且,以二进位的方式对待基因得分有很多信息确实(这里说的二进位指的是要么选中,要么不被选中)。另一方面,基于基因全分布的方法没有门槛threshold-free,因为他们检测基因集靠的是比较他们的得分分布vs背景分布。因为这个原因,他们经常被认为是优于threshold-dependent方法,尤其和一个连续的基因集得分。GSEA(Gene-Set Enrichment Analysis),它的基因排序rank源于差异表达或其他统计学,是最流行的技术之一,虽然也有其他的全分布检验模型被提出。

    02

    人类小脑内在组织背后的基因图谱

    人类小脑的功能多样性在很大程度上被认为更多地来自于其广泛的联系,而不是局限于其部分不变的结构。然而,小脑内在组织中连接的确定是否以及如何与微尺度基因表达相互作用仍不清楚。在这里,我们通过研究同时连接小脑功能异质性及其驱动因素的遗传基质,即连接因素,来解码小脑功能组织的遗传图谱。我们不仅鉴定了443个网络特异性基因,而且还发现它们的共表达模式与小脑内功能连接(FC)密切相关。其中90个基因也与皮质-小脑认知-边缘网络的FC有关。进一步发现这些基因的生物学功能,我们进行了“虚拟基因敲除”,通过观察基因之间的耦合和FC以及将基因分成两个子集,即,一个涉及小脑神经发育的阳性基因贡献指标(GCI+)和一个与神经传递有关的阴性基因集(GCI−)。一个更有趣的发现是,GCI−与小脑连接-行为关联显著相关,并与许多公认的与小脑功能异常密切相关的脑部疾病密切相关。我们的研究结果可以共同帮助重新思考小脑功能组织背后的遗传底物,并为神经精神疾病中涉及小脑的高阶功能和功能障碍提供可能的微宏观相互作用的机制解释。

    02

    Histograms of Oriented Gradients for Human Detection

    以基于线性SVM的人体检测为例,研究了鲁棒视觉目标识别的特征集问题。在回顾了现有的基于边缘和梯度的描述符之后,我们通过实验证明了方向梯度(HOG)描述符的直方图网格在人类检测方面明显优于现有的特征集。我们研究了计算的各个阶段对性能的影响,得出结论:在重叠描述符块中,细尺度梯度、细方向边距、相对粗的空间边距和高质量的局部对比度归一化都是获得良好结果的重要因素。新方法在原有MIT行人数据库的基础上实现了近乎完美的分离,因此我们引入了一个更具挑战性的数据集,其中包含1800多张带注释的人类图像,具有大范围的姿态变化和背景。

    04
    领券