首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用Python实现一个简单的——人脸相似度对比

整体思路: 1、预先导入所需要的人脸识别模型; 2、遍历循环识别文件夹里面的图片,让模型“记住”人物的样子; 3、输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果。...使用到的第三方模块和模型: 1、模块:os,dlib,glob,numpy; 2、模型:人脸关键点检测器,人脸识别模型。 第一步:导入需要的模型。...这里解释一下两个dat文件: 它们的本质是参数值(即神经网络的权重)。人脸识别算是深度学习的一个应用,事先需要经过大量的人脸图像来训练。所以一开始我们需要去设计一个神经网络结构,来“记住”人类的脸。...是在前面检测关键点的基础上,生成人脸的特征值。...在这一步中,我们要完成的是,对图片文件夹里面的人物图像,计算他们的人脸特征,并放到一个列表里面,为了后面可以和新的图像进行一个距离计算。关键地方会加上注释,应该不难理解。

3.4K30

图的度计算和相似度计算

可以通过以下公式计算某个节点的出度和入度:出度 = 从节点出发的边的数量入度 = 指向节点的边的数量图的相似度计算一种用于计算节点相似度的算法是节点结构相似度算法。...该算法基于两个节点之间的结构相似性来计算节点的相似度。首先,将每个节点的邻居节点及其边的类型记录下来,构建节点的邻接矩阵。对于两个节点i和j,分别计算它们的邻居节点集合Ni和Nj。...如果两个节点的邻居节点集合都为空,则相似度为0。计算节点i的邻居节点与节点j的邻居节点的交集大小,记为A。计算节点i的邻居节点与节点j的邻居节点的并集大小,记为B。...计算节点j的邻居节点与节点i的邻居节点的交集大小,记为C。计算相似度:similarity = (A + C) / B。输出相似度结果。...相似度 = (A + C) / B = (2 + 2) / 4 = 1。因此,节点i和节点j的相似度为1。使用Markdown格式输出结果:节点i与节点j的相似度为1。

90061
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Aidlux的图片相似度对比

    印章检测流程:利用深度神经网络,提取印章深度特征,同时学习印章之间的相似度,自己与自己相似,自己与其它不相似。1....Siamese网络Siamese网络是一种常用的深度学习相似性度量方法,它包含两个共享权重的CNN网络(说白了这两个网络其实就是一个网络,在代码中就构建一个网络就行了),将两个输入映射到同一特征空间,然后计算它们的距离或相似度一一使用共享的卷积层和全连接层...,输出特征向量表示,然后计算相似度。...Triplet Loss网络TripletLoss网络是一种通过比较三个样本之间的相似度来训练网络的方法。...本文方法本文利用李生网络,把真章、假章同时输入进行学习,真与真相似度为1;真与假相似度为0,设计损失函数(结合BCELoss和Contrastive Loss) 进行模型训练。

    30000

    句子相似度的计算 | NLP基础

    文本的相似度又分为词级别的相似度,句子级别相似度,段落级别的相似度和文章级别的相似度。 ?...词级别的相似度计算相对容易,从几十年前人们建立的WordNet字典到近几年十分火热的Word2Vec都是用来解决词与词之间相似度的问题。...尤其是随着各种词向量的出现,词级别的相似度问题已经得到了较好的解决。 基于词向量计算句子的相似度 不过句子或更长的文本由于复杂性更高,包含的信息更多,其相似度问题还没有一个非常完善的解决方案。 ?...使用孪生网络计算句子相似度 除了上面介绍的之外,孪生网络也是相似度对比不可不提的一个概念,它很简单,但是很有效果。...孪生网络结构如下图所示,使用两个权值共享的网络(两个网络相同)对一对输入进行编码,然后通过计算两个输入编码结果的相似度来判断输入的相似度。这种网络被广泛应用于各种相似度计算任务重中。

    3.4K10

    多种相似度计算的python实现

    前言         在机器学习中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离(欧式距离)、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。...我们这里把一些常用的相似度计算方法,用python进行实现以下。大家都是初学者,我认为把公式先写下来,然后再写代码去实现比较好。...欧几里德距离(欧式距离) 几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为: ?...几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。...: p = [1,3,2,3,4,3] q = [1,3,4,3,2,3,4,3] print manhattan(p,q) 得出结果为4 小结         这里只讲述了三种相似度的计算方法,事实上还有很多种

    1.8K40

    比较两幅图像的相似度的各种相似度量结果对比

    对于人眼来说,很容易看出两个给定图像的质量有多相似。例如下图将各种空间噪声添加到图片中,我们很容易将它们与原始图像进行比较,并指出其中的扰动和不规则性。...在本文中,我们将看到如何使用一行代码实现以下相似性度量,并对比各相似度的评分: Mean Squared Error (MSE) Root Mean Squared Error (RMSE) Peak...在相似度评分中,我们可以看到,与其他噪声方法相比,Salt and Pepper和Poisson的值更接近于理想值。类似的观察结果也可以从其他噪声方法和指标中得到。...GAN最近在去噪和清理图像方面做得非常好,这些指标可以用来衡量模型在视觉观察之外实际重建图像的效果。利用这些相似度指标来评估大量生成图像的再生质量,可以减少人工可视化评估模型的工作。...此外,相似度度量也可以判断和强调图像中是否存在的对抗性攻击。因此,这些分数可以用来量化这些攻击带来的干扰量。 作者:Param Raval

    4.3K10

    计算向量间相似度的常用方法

    计算化学中有时会要求我们计算两个向量的相似度,如做聚类分析时需要计算两个向量的距离,用分子指纹来判断两个化合物的相似程度,用夹角余弦判断两个描述符的相似程度等。...计算向量间相似度的方法有很多种,本文将简单介绍一些常用的方法。这些方法相关的代码已经提交到github仓库 https://github.com/Feteya/Similarity 1....基于距离的相似度计算方法 计算相似度时,一类常用的方法是计算两个向量之间的距离,两个向量间距离越近,则两个向量越相似。...集合观点下的相似度 4.1 杰卡德相似系数 (Jaccard similarity coefficient) (1) 杰卡德相似系数 两个集合A和B的交集元素在A、B的并集中所占的比例,称为两个集合的杰卡德相似系数...杰卡德相似系数是衡量两个集合的相似度一种指标。 (2) 杰卡德距离 与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示: ?

    32.6K41

    皮尔逊相似度计算的例子(R语言)

    大家好,又见面了,我是全栈君 编译最近的协同过滤算法皮尔逊相似度计算。下顺便研究R简单使用的语言。概率统计知识。...二、类似度计算在协同过滤推荐算法中的地位 ---- 在协同过滤推荐算法中,无论是基于用户(User-based)还是基于物品(Item-based),都要通过计算用户或物品间的类似度,得到离线模型...1)余弦类似度(Cosine-based Similiarity) 2)相关性类似度(Correlation-based Similiarity) 这样的类似度计算使用的算法就是皮尔森...以下以还有一篇文章中的用户-物品关系为例,说明一下皮尔森类似度的计算过程。...皮尔森类似度的原始计算公式为: ,不继续展开化简。

    91520

    Python判断两个单词的相似度

    本文要点在于算法的设计:如果两个单词中不相同的字母足够少,并且随机选择几个字母在两个单词中具有相同的前后顺序,则认为两个单词是等价的。 目前存在的问题:可能会有误判。...in one if ch not in another)) def testPositions(one, another, positions): '''用来测试单词one中位置positions上的字母是否...与单词another中的相同字母具有同样的前后顺序''' #获取单词one中指定位置上的字母 lettersInOne = [one[p] for p in positions]...print(lettersInOne) #这些字母在单词another中的位置 positionsInAnother = [another[p:].index(ch)+p for p, ch...//2, minLength-1)) positions.sort() flag = testPositions(one, another, positions) #两个单词具有较高相似度

    1.6K60

    使用Faiss进行海量特征的相似度匹配

    背景 我们不妨想象下面的几个例子: 输入一张商品的图片,从商品库中匹配出相似的商品,这是以图搜图的一个例子; 输入一小段音乐,从音乐库中匹配出对应的音乐出,这是MIR的一个例子; 输入一张人脸,从人脸底库中匹配出对应的人...,这是1:N 人脸识别的一个例子; 像这样的例子还有很多,事实上,以神经网络对样本进行特征的提取,然后在海量的特征库里进行特征相似度的搜索/比对/匹配,已经是AI技术落地的一大领域。...Faiss就是Facebook维护的一个高效的特征相似度匹配和聚类的库。 本文将从最基本的特征比对说起,然后落脚到我们为什么需要Faiss,以及Faiss上提供的在特征比对之外的功能。.../test_emb.py 假设我们现在要在db里放入7030张图片的特征来作为我们的特征库,之后,待搜索的图片就和该特征库来做相似度匹配。...内存的使用量确实降下来了,但是如果特征库只包含centroid ID的话,怎么进行向量的相似度计算呢?只有centroid ID的话,怎么计算L2距离呢???

    3.8K20

    OpenCV进行图像相似度对比的几种办法

    对计算图像相似度的方法,本文做了如下总结,主要有三种办法: ---- 1.PSNR峰值信噪比 PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标。...SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。 ?...在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量...一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。...几年前上学时候写了这个文章,没想到现在居然是博客访问最高的一篇文章,现在我又收集了一些论文文档资料,当然衡量图像相似度的方法有很多不止上述的三种方法,具体我们再看看论文和外围资料,下载链接: http:

    6.7K30

    基于用户的协同过滤(余弦相似度)

    协同过滤 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的...余弦相似度 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 ? ?...NaN 4.0 NaN 4.0 NaN 5.0 NaN C 2.0 NaN 2.0 NaN 1.0 NaN NaN D NaN 5.0 NaN 3.0 NaN 5.0 4.0 目标: 我们要寻找 A 最相似的其他顾客...fillna(0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.18353259]]) array([[0.88527041]]) 从上面看出A和C的比较相似...0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.30772873]]) array([[-0.24618298]]) 去中心化后 A和C的相似度是负的

    2.6K20

    每日论文速递 | Embedding间的余弦相似度真的能反映相似性吗?

    深度学习自然语言处理 分享 整理:pp 摘要:余弦相似度是两个向量之间角度的余弦值,或者说是两个向量归一化之间的点积。...一种流行的应用是通过将余弦相似度应用于学习到的低维特征嵌入来量化高维对象之间的语义相似性。在实践中,这可能比嵌入向量之间的非归一化点积效果更好,但有时也会更糟。...我们讨论了线性模型之外的影响:在学习深度模型时,我们采用了不同的正则化组合;在计算所得到的嵌入的余弦相似度时,这些正则化组合会产生隐含的、意想不到的影响,使结果变得不透明,甚至可能是任意的。...word2vec [5]: word2vec是一种著名的词嵌入方法,它使用负采样或逆概率校准(IPS)来处理不同词的流行度(频率),这可能影响余弦相似性的结果。...用户和物品的动态特性:在推荐系统中,用户的兴趣和物品的流行度可能会随时间变化。研究这些动态特性如何影响余弦相似性度量,以及如何设计模型来适应这些变化,是一个值得探索的问题。

    90310

    Python简单实现基于VSM的余弦相似度计算

    当你给出一篇文章E时,采用相同的方法计算出E=(q1, q2, …, qn),然后计算D和E的相似度。         计算两篇文章间的相似度就通过两个向量的余弦夹角cos来描述。...文本D1和D2的相似性公式如下: ? 其中分子表示两个向量的点乘积,分母表示两个向量的模的积。 计算过后,就可以得到相似度了。我们也可以人工的选择两个相似度高的文档,计算其相似度,然后定义其阈值。...使用余弦这个公式,我们就可以得到,句子A与句子B的夹角的余弦。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。...所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。...(为了避免文章长度的差异,可以使用相对词频); (3)生成两篇文章各自的词频向量; (4)计算两个向量的余弦相似度,值越大就表示越相似。

    1.8K40

    用python比较两篇文章的相似度以判断重复度

    文档相似度判断方法有很多种,比如说余弦相似度,ngram和著名的tf-idf方法去计算文本相似度。 本文以最简单比较好理解的余弦相似度,用python实操如何比较两段文字的相似度。...一、余弦相似度 使用余弦相似度来计算不同文档之间的相似度。 1.1 基本数学公式 假设有两个向量 b和a: 那么点积的定义是两个向量相加的每个分量的简单乘法。...1.2 余弦相似性 两个向量之间的余弦相似度是计算它们之间角度的余弦的度量。...余弦相似度公式: 余弦相似度将生成一个指标,通过查看角度而不是大小来表示两个文档的相关性,如以下示例所示: 不同文档的余弦相似度值为 1(方向相同)、0(90 度)、-1(方向相反)。...对句子向量化之后,就可以计算每两个句子的相似度。

    54710

    Jaccard相似度在竞品分析中的应用

    在推荐里我们经常会遇到item和user之间的相似度,那么竞品分析其实也可以同类化于相似度的计算问题。...具体做法:提到相似度计算,会想到很多方法,常见的欧几里得距离,余弦计算,皮尔逊距离等等,对于不同的距离计算,有不同的适用条件,之前总结过一个关于相似度计算的文章,只不过觉得不是很完善,所以一直没有发出来...这次做竞品分析的时候突然想起了Jaccard相似度。那么Jaccard相似度是什么呢?...,第一版计算结果:博客园与知乎的Jaccard相似度为= 1 / 7=0.14   这是最简单的Jaccard相似度计算,然而我们发现,逛博客园的经常逛知乎,且知乎权重很高,但是他们俩的相似度却很低,只有...将要分析的竞品本身加入集合后就可避免我们第一次计算时出现的不符合常识的结果。   但是,还得思考一个问题,博客园对知乎的Jaccard相似度与知乎对博客园的Jaccard相似度应该是一样的吗?

    1.5K50
    领券