首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

海量图片存储解决方案

当今世界,互联网、大数据应用迅猛发展,物联网、人工智能、云计算 技术日新月异,随之而来的是各种企业和个人应用持续不断地产生亿级甚至是百亿级的海量小文件。...为此,杉岩数据推出了强大的对象存储产品,解决企业对海量图片、视频等非结构数据存储需求,以便更好的挖掘非结构化数据的价值。...,数据能够自动均衡,实现整个存储的滚动升级。...· 第二级: 在集群多个区域故障的时候,提供跨集群容灾方案。支持二到六个数据中心的数据容灾,包括双中心或者是更复杂的方式建立存储集群,不同数据中心之间进行数据异步传输。...对象存储+AI,创造无限可能 在完成大量非结构化数据积累后,企业可以通过结合AI先进的数据分析与挖掘技术,发挥海量数据背后的价值,为更多智能化的新业务系统提供强劲助力,支撑企业业务发展。

2.6K20

海量数据查询方案mysql_Mysql海量数据存储和解决方案之二—-Mysql分表查询海量数据

关键词:分库分表,路由机制,跨区查询,MySQL 数据变更,分表数据查询管理器与线程技术的结合,Cache 前面已经讲过Mysql实现海量海量数据存储查询时,主要有几个关键点,分表,分库,集群,M-S,...分库是如何将海量的Mysql数据放到不同的服务器中,分表则是在分库基础上对数据现进行逻辑上的划分。...常用解决方案如下: MySQL master/slave:只适合大量读的情形,未必适合海量数据。MySQL cluster:提供的可能不是大家想要那种功能。...MySQL对于海量数据按应用逻辑分表分数据库,通过程序来决定数据存放的表。但是 跨区查询是一个问题,当需要快速查找一个数据时你得准确知道那个数据存在哪个地方。...海量数据查询时,还有很重要的一点,就是Cache的应用。不过是不是Cache在任何时候都是万能贴呢?不一定。Cache也命中率,维护等问题。

1.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    海量数据存储与访问瓶颈解决方案-数据切分

    这些海量数据存储与访问成为了系统设计与使用的瓶颈,而这些数据往往存储数据库中,传统的数据库存在着先天的不足,即单机(单库)性能瓶颈,并且扩展起来非常的困难。...如果单机数据库易于扩展,数据可切分,就可以避免这些问题,但是当前的这些数据库厂商,包括开源的数据库MySQL在内,提供这些服务都是需要收费的,所以我们转向一些第三方的软件,使用这些软件做数据的切分,将原本在一台数据库上的数据...那么我们如何做数据切分呢? 数据切分 数据切分,简单的说,就是通过某种条件,将我们之前存储在一台数据库上的数据,分散到多台数据库中,从而达到降低单台数据库负载的效果。...这样,原本存在一个数据库中的订单数据,被水平的切分成了两个数据库。...无论是垂直切分,还是水平切分,它们解决了海量数据存储和访问性能问题,但也随之而来的带来了很多新问题,它们的共同缺点有: 分布式的事务问题; 跨库join问题; 多数据源的管理问题 针对多数据源的管理问题

    1.8K61

    Mysql海量数据存储和解决方案之—分布式DB方案

    3) 现有解决方式:通过数据切分提高网站性能,横向扩展数据层 水平切分DB,有效降低了单台机器的负载,也减小了宕机的可能性。 集群方案:解决DB宕机带来的单点DB不能访问问题。...这样一来,文章数据就很自然的被分到了各个数据库中,达到了数据切分的目的。接下来要解决的问题就是怎样找到具体的数据库呢?...为什么要切分数据? 1)      像Oracle这样成熟稳定的DB可以支撑海量数据存储和查询,但是价格不是所有人都承受得起。 2)      负载高点时,Master-Slaver模式中存在瓶颈。...而Sharding可以轻松的将计算,存储,I/O并行分发到多台机器上,这样可以充分利用多台机器各种处理能力,同时可以避免单点失败,提供系统的可用性,进行很好的错误隔离。...4)      接下来对分布式数据库解决海量数据的存访问题做进一步介绍 分布式数据方案提供功能如下: (1)提供分库规则和路由规则(RouteRule简称RR),将上面的说明中提到的三中切分规则直接内嵌入本系统

    2.5K31

    海量数据处理方案

    少量数据处理方案 对于在内存中可以一次性快速处理的少量数据,我们有很多方式对数据进行处理。...海量数据处理的核心思想 基于海量数据处理面临的上述两个问题,我们可以很容易想到一些对于海量数据进行处理的方案: 不必把数据一次性加载到内存中,而是通过分批处理的方式,把外存中的数据加载到内存中进行处理;...海量数据处理的一些常见案例及对应处理方案 排序问题 案例:给 10 GB 的订单文件进行排序,排序条件是订单的总金额。 首先需要判断,当前内存中能否一次性处理这 10 GB 的文件?...对于海量数据而言,仍然可以使用上面的两种方式来进行处理: (1)方式1:排序+双指针 先对两个文件 0.txt 和 1.txt 进行排序,具体方案可以参考上文排序问题里面的案例; 然后使用 a 、 b...总结 对于海量数据处理问题,在实际情况中,我们可以先考虑单机内存足够处理的情况下需要采用何种方式; 当我们找到单机内存充足情况的处理方案以后,再通过一些海量数据的通用处理手段,例如:外存分批读取、分片、

    19720

    海量数据存储技术(cpu制造瓶颈)

    对于海量数据的处理 随着互联网应用的广泛普及,海量数据存储和访问成为了系统设计的瓶颈问题。对于一个大型的互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载。...为什么要数据切分 上面对什么是数据切分做了个概要的描述和解释,读者可能会疑问,为什么需要数据切分呢?像 Oracle这样成熟稳定的数据库,足以支撑海量数据存储与查询了?为什么还需要数据切片呢?...即使就是能支付的起,假如有更好的方案,有更廉价且水平扩展性能更好的方案,我们为什么不选择呢?...,当我们采用了数据库切分方案,也就是说有N台机器组成了一个完整的DB 。...这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。

    1.7K10

    海量数据存储硬件平台解决思路

    网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值!...如此海量的规模需要多大的存储空间,采用怎样的软硬件解决方案,小编有幸请到我们的存储硬件技术大拿守锋和大家一起聊聊腾讯的存储硬件架构及有关存储的技术应用。...针对结构化数据数据库类)提供了CDB(Cloud Database)服务它为第三方开发人员提供的DB存储解决方案。...针对半结构化数据(key-value类)提供了CKV(Cloud Key-Value)服务为第三方开发人员提供的KEY-Value存储集群的解决方案,支持开源的memcached协议。...在存储系统架构方面,云化的存储服务随着万兆网络的普及,大力解决现有的带宽瓶颈问题后,可以大力推广云存储方案,收拢大大小小各种业务的不同层次的需求,提高存储设备的利用率,可以从公司层面来降低整个存储成本。

    3K50

    关于云计算的海量数据存储模型

    关于云计算的海量数据存储模型 引言 随着越来越多的人使用计算机,整个网络会产生数量巨大的数据,如何存储网络中产生的这些海量数据,已经是一个摆在面前亟待解决的问题。...本文提出的基于云计算的海量数据存储模型,是依据云计算的核心计算模式MapReduce],并依托实现了MapReduce 计算模式的开源分布式并 行编程框架Hadoop[3],将存储模型和云计算结合在一起...,实现海量数据的分布式存储。...2.3 基于云计算的海量数据存储模型 根据数据海量特性,结合云计算技术,特提出基于云计算的海量数据存储模型,如所示在中,主服务控制机群相当于控制器部分,主要负责接收 应用请求并且根据请求类型进行应答。...存储节点机群相当于存储器部分,是由庞大的磁盘阵列系统或是具有海量数据存储能力的机群系统,主要功 能是处理数据资源的存取。HDFS 和Hbase 用来将数据存储或部署到各个计算节点上。

    2.1K10

    海量数据查询方案设计

    像点击流、监控和日志这些原始数据是“海量数据中的海量数据”,这些原始数据经过过滤汇总和计算之后,大多数情况下数据量会有量级下降,如从TB级别的数据量,减少到GB级别。...原始数据经过计算后产生的计算结果,数据量相比原始数据会减少一些,但仍然是海量数据。还要在这个海量数据上,提供性能可以接受的查询服务。 1 分析类系统如何选择存储?...分析类系统对存储的需求: 用于分析的数据量比在线业务大出几个数量级,这需要存储系统能保存海量数据 能在海量数据上做快速聚合、分析和查询。...这么大量级一般选择保存在HDFS中,配合Map-Reduce、Spark、Hive等等这些大数据生态圈产品做数据聚合和计算。 根据查询选择存储系统 面对海量数据,仅根据数据量级选择存储系统远不够。...对于海量数据来说,存储系统无银弹,重要的是思想,根据业务对数据查询方式,反推数据应该使用什么存储系统、如何分片,以及如何组织。

    1.1K20

    HBase海量数据高效入仓解决方案

    一、方案背景 现阶段部分业务数据存储在HBase中,这部分数据体量较大,达到数十亿。...所以此种方案在此实际应用场景中,是不应该采取的方案。 2.2.2 方案二 根据业务表中的时间戳字段,抓取增量数据。...这种实现方案同时解决了方案一、方案二的问题。同时,能够有效监控业务方对HBase表字段的新增情况,避免业务方未及时通知而导致的数据缺失问题,能够最大限度的减少数据回溯的频率。...综上,采用方案三作为实现HBase海量数据入仓的解决方案。...另外,通过多次实验对比,及对各种方案的可行性分析,将数据同步方案同步给一站式大数据开发平台,推动大数据开发平台支持基于timeRange的增量同步功能,实现此功能的平台化、配置化,解决了HBase海量数据入仓的痛点

    64320

    IM系统海量消息数据是怎么存储的?

    一、与消息相关的主要场景 1、存储和离线消息。 现在的IM系统,消息都要落地存储。这样如果接收消息的用户不在线,等他下次上线时,能获取到消息数据。...三、存储消息关键点 1、离线消息 离线消息读取频繁(写也有一定压力),但是检索逻辑简单(参看《一个海量在线用户即时通讯系统(IM)的完整设计》拉取离线消息章节)。...我们采用内存数据库(Redis)存储,主要结构使用SortedSet(可以有更高效的存储结构,但Redis不支持)。对于群消息,采用扩散写方式(一条群消息给每个群成员都写一份)。...2、历史消息 历史消息的访问频率低,但是每条消息都需要存储,我们采用关系型数据库(MySQL)存储,重点考虑写入效率。对于群消息,采用扩散读方式(每条群消息只写一条记录)。...四、消息存取方案 1、离线消息 存储离线消息。按照消息接收者ID(toID),取模Hash分库(也可以用一致性Hash)。每个用户创建一个SortedSet结构的Key,用于存储离线消息。

    7.6K10

    hbase解决海量图片存储

    随着互联网、云计算及大数据等信息技术的发展,越来越多的应用依赖于对海量数据存储和处理,如智能监控、电子商务、地理信息等,这些应用都需要对海量图片的存储和检索。...与前面方案不改变HDFS本身不同,淘宝TFS对HDFS的元数据存储架构进行了调整。...本文将介绍基于HBase的海量图片存储技术,并针对其问题给出改进方法。本文第1部分介绍了基于HBase的海量图片存储技术方案,并分析了原理及优势。第2部分介绍了该方案存在的问题及改进方法。...第3部介绍了改进后方案的应用效果。第4部分总结全文,并指明下一步工作。 一、基于HBase的海量图片存储技术 Google利用BigTable来存储网页快照及属性信息,来支持网页搜索。...采用分布式存储,比采用共享存储方案,成本节省60%以上;扩展性好。元数据字段可根据应用情况灵活添加。系统存储容量、并行处理能力可按需平滑扩展; 实施、管理方便。

    2.6K20

    Elasticsearch数据存储优化方案

    优化Elasticsearch数据存储有助于提升系统性能、降低成本、提高数据查询效率以及增强系统的稳定性和可靠性。通常我们再优化Elasticsearch数据存储会遇到一些问题,导致项目卡壳。...以下是优化Elasticsearch数据存储的一些重要作用:1、问题背景在某些场景中,我们可能会考虑绕过数据库,直接使用Elasticsearch存储数据,并在Python应用程序中实时构建这些数据。...2、解决方案使用Elasticsearch批量索引APIElasticsearch的批量索引API具有很高的效率,可以处理大量的数据。具体性能会根据源文档和分析器的复杂性有所变化。...队列缓冲系统可以自动重试发送失败的数据,确保数据最终能够被成功处理。使用消息代理可以使用消息代理来实现队列缓冲系统。消息代理是一种中间件软件,它可以存储和转发消息。...如果Elasticsearch无法及时处理数据,那么消息代理会将数据存储起来,等到Elasticsearch能够处理数据时再转发给Elasticsearch。

    16210

    vivo 云服务海量数据存储架构演进与实践

    随着 vivo 云服务业务发展,云服务用户量增长迅速,存储在云端的数据量越来越大,海量数据给后端存储带来了巨大的挑战。云服务业务这几年最大的痛点,就是如何解决用户海量数据存储问题。...为了解决海量数据存储问题,云服务将分库分表的 4 板斧:水平分表、垂直分表、水平分库、垂直分库,全部进行了实践。 1、水平分表 荆棘之路 1:浏览器书签、便签单库单表,单表数据量已过亿级怎么办?...如果采用常规的扩容方案,那我们将面临着海量存量数据的迁移重新路由问题,成本太大。...方案3:切换InnoDB 存储引擎至TokuDB,利用TokuDB引擎天然的数据压缩能力 优势: TokuDB天然支持数据压缩,并且支持多种压缩算法,支持频繁的数据写入场景,对于大数据量的存储有天然的优势...最终线上联系人数据库进行数据压缩的效果如下: 六、写在最后 本文介绍了云服务随着业务发展,海量数据存储所带来的挑战,以及云服务在分库分表、数据数据压缩上的一些经验,希望能提供借鉴意义。

    1.9K00

    【鹅厂网事】海量数据存储硬件平台解决思路

    网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值!...如此海量的规模需要多大的存储空间,采用怎样的软硬件解决方案,小编有幸请到我们的存储硬件技术大拿守锋和大家一起聊聊腾讯的存储硬件架构及有关存储的技术应用。...针对结构化数据数据库类)提供了CDB(Cloud Database)服务 它为第三方开发人员提供的DB存储解决方案。...针对半结构化数据(key-value类)提供了CKV(Cloud Key-Value)服务 为第三方开发人员提供的KEY-Value存储集群的解决方案,支持开源的memcached协议。...在存储系统架构方面,云化的存储服务随着万兆网络的普及,大力解决现有的带宽瓶颈问题后,可以大力推广云存储方案,收拢大大小小各种业务的不同层次的需求,提高存储设备的利用率,可以从公司层面来降低整个存储成本。

    95730

    一种海量日志存储、分析解决方案V1.0 原

    方案试运行中,待观测其性能、稳定性及健壮性,请勿直接应用生产。 涉及的技术栈。     hadoop,版本2.6.0,主要用来存储数据及进行离线分析。    ...4.1.2、然后针对分析类型,预处理数据,预处理数据分两种存储,一种是增量,使用redis,一种是全量,使用hbase。...当天数据全部存储到增量表中,并设置时效36小时,自动清除过期数据,每天将增量数据,同步到全量数据中。...并将最终结果存储到mongodb(存储时 注意不要和实时分析放在同一个document里)。     5、开放spark的thirfserver对外提供日志数据查询供运维定位问题。    ...但目前还没一个完美的解决方案。一个变相的解决办法是限定hive表,然后根据规则将数据写入到hive表文件里。

    2K21
    领券