作者/朱季谦故事得从这一张图开始说起——可怜的打工人准备下班时,突然收到领导发来的一份电商消费者样本数据,数据内容是这样的——消费者姓名|年龄|性别|薪资|消费偏好|消费领域|常用购物平台|常用支付方式...购物平台和支付方式画像:了解用户首选的电商平台和支付方式,有助于针对不同渠道进行个性化的营销活动。优惠偏好画像:通过用户在折扣优惠、免费赠品等方面的选择,可以了解其在购物时最看重哪些优惠方式。...购物目的画像:通过用户对商品的描述,如性价比、时尚潮流、环保可持续等,推断其购物的目的和价值观。接下来,就是基于这些数据和分析目标,开始基于Spark实现电商用户画像案例讲解。...二、画像数据分析的实现2.1、商品类别偏好画像根据用户对汽车配件、珠宝首饰、图书音像等不同商品类别的选择,可以推测用户的兴趣爱好和消费倾向。...结合以上函数,就可以实现将consumerRDD中的数据按照【消费领域】字段,聚合出每个领域的消费者数量。
基于Python Outlier Detection库进行异常值处理(Kmeans对异常值敏感)。
让参赛者在真实业务场景上使用数据;(2)可以交流多种想法,可以接触到企业内部真实脱敏的数据,让参赛者在真实业务场景上使用数据;(3)进一步提升信用评估方法技能,通过此次参赛可进一步提升参赛选手的对用户信用评分的技能,可以用在用户画像和黑产识别上
本文将使用Flask开发一个微博用户画像的生成器。 开发步骤如下: 抓取微博用户数据; 分析数据,生成用户画像; 网站实现,美化界面。...'1350995007', '1076031350995007') # 查看博文条数 len(posts) 1279 # 显示前3个 posts[:3] 至此,用户的数据已准备就绪,接下来开始生成用户画像...二、生成用户画像 1.提取关键词 这里从博文列表中提取出关键字,分析出博主的发表的热词 import jieba.analyse from html2text import html2text content...熟悉Django模版的应该可以很快上手,流程也和Django类型,在项目根目录下建一个名为templates的文件夹并新建一个名为index.html的文件,代码如下: Flask之微博单用户画像生成器...本教程展示的只是单用户,后面也可以批量获取用户信息,生成一个群体的用户画像。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。...用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。...主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
01 什么是健康码画像?...健康码画像让普通大众理解了数据,其实在实际的应用中还有很多针对特定场景的画像,如用户画像、产品画像、业务经营画像等,下面以用户画像为例讲解。 02 什么是用户画像?...、场景等描述,形成一个用户画像原型。...通过这个用户画像,从而对这个人有了一个整体的认识,一个完整的人物画像已经呈现在了你的脑海里。当标签被描述得越多,用户画像就越清晰。...如客户管理系CRM,或者有智能采集系统日志的工具,收集方式包括API、SDK和传感器采集等,根据数据分析与数据挖掘什么标签来反推需要的数据源。
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。...本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。...将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。...图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。...本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。...用户画像的分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。...主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic user_info 新增加一个Kafka工具类 @Slf4j public...private String yearsFlag; private Long numbers = 0L; private String groupField; } 创建一个YearsUntil工具类...ClickUntil createClickUntil() { return DefaultClickUntil.createInstance(); } } 一个DateUntil工具类...创建用户画像手机运营商标签 创建一个手机运营商工具类CarrierUntil public class CarrierUntil { /** * 中国电信号码格式验证 手机段: 133,153,180,181,189,177,1700,173,199...String productTypeId; private Long numbers = 0L; private String groupField; } 在DateUntil工具类中增加一个方法
用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。...用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。...创建用户画像的方法 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统
本文通过自研工具,生成数据库画像,为去O评估提供一手数据,希望给大家带来借鉴。...也就是说,需要给我们的数据库进行“画像”。...为信息收集更有针对性,工具通过参数设置部分阈值。通过运行命令行,收集信息后生产WEB版评估报告,以可视化的方式直观体现出来。不仅可作为去O评估依据,亦可作为后续改造的数据参考。...三、画像解读 下面针对报告数据进行解读,并对常见的去O选型-MySQL进行说明。 3.1 概要信息 ? 显示收集的目标的概要信息,包括IP、实例、用户等。...通过一些工具调用测试代码,产生模拟测试的压力。这对于系统改造、升级、扩容评估、新硬件选型等均有意义。在具体去O工作中,新技术方案是否满足需要,可通过此方法进行评估验证。
作业流程调度:标签加工、人群计算、同步数据到业务系统、数据监控预警等脚本开发完成后,需要调度工具把整套流程调度起来。本书讲解了Airflow这款开源ETL工具在调度画像相关任务脚本上的应用。...图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。...就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。...商城的运营需要解决两个问题:一方面在企业产品线逐渐扩张、信息资源过载的背景下,如何在兼顾自身商业目标的同时更好地满足消费者的需求,为用户带来更个性化的购物体验,通过内容的精准推荐,更好地提高用户的点击转化率...初步介绍了画像系统的轮廓概貌,帮助读者对于如何设计画像系统、开发周期、画像的应用方式等有宏观的初步的了解。
前段时间做可一些用户画像方面的工作,对用户画像技术有了初步了解。如果你是一个对大数据和用户画像技术完全不了解的小白,希望这篇文章可以提供一点帮助。...在项目开展前,当然要先了解用户画像主要是干什么的,下面是我总结的两篇文章,大家可以先对大数据和用户画像有个基本的认识。...我知道你很急,但是你先别急,上面这篇文章介绍了大数据中常用的框架,可以帮助我们对工具和框架有些基础概念,便于以后项目使用选型。在实际项目中再去深入理解。...用户画像--《美团机器学习实践》笔记 如果刚接触用户画像,可以先通过以上两篇文章对用户画像挖掘和应用有初步了解。如果你读完以后是一脸懵的话,我知道你很急,但是你先别急。...~ 以上内容阐述了如何通过最直观简洁的方式来构建用户画像,让大家对用户画像的概念有更深入的理解。
(5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析 根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣...三、 用户画像的分类 从画像方法来说,可以分为定性画像、定性+定量画像、定量画像 从应用角度来看,可以分为行为画像、健康画像、企业信用画像、个人信用画像、静态产品画像、...旋转设备画像、社会画像和经济画像等。...八、 用户画像基本步骤[F2] 根据具体业务规则确定用户画像方向后,开展用户画像分析,总体来说,一个用户画像流程包括以下三步。...十二、用户画像困难点、用户画像瓶颈 用户画像困难点主要表现为以下4个方面 资料搜集和数据挖掘 在画像之前需要知道产品的用户特征和用户使用产品的行为等因素,从而从总体上掌握对用户需求需求 创建用户画像不是抽离出典型进行单独标签化的过程
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像?...这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: ?...二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?...所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。...百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%,订单转化率提升34%。
本文和你一起探索电信流失客户的画像,后续文章会对电信用户进行流失预测。 一、数据读取与分析 首先介绍一下数据集,它总共包含了7043个用户的信息。...二、流失客户画像分析-明细 1 是否为老年人 是否为老年人指标不同值对应的客户流失率如下: 老年人和非老年人的客户数分别为1142和5901,在客户数上老年人的占比要远小于非老年人。...三、流失客户画像分析-总结 总结的流失客户画像如下: 至此,电信流失客户画像已讲解完毕。后续文章会对电信客户流失进行预测,敬请期待。
在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢?...下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。...开发人员在app上线前大多会将SDK(软件开发工具包)嵌入app中,用户使用app后,SDK会将用户的使用数据记录入库,因为很多公司具备了内部数据平台。...量表的定义: 一种测量工具,是试图确定主观的、有时是抽象概念的定量化测量的程序,对事物的特性变量可以用不同的规则分配数字。 简单说,就是可以将用户操作的体验通过问题对应的数值量化。...用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。
image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢?...下面我将结合通过案例,带你了解构建用户画像的4个步骤: image.png 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。...开发人员在app上线前大多会将SDK(软件开发工具包)嵌入app中,用户使用app后,SDK会将用户的使用数据记录入库,因为很多公司具备了内部数据平台。...量表的定义: 一种测量工具,是试图确定主观的、有时是抽象概念的定量化测量的程序,对事物的特性变量可以用不同的规则分配数字。 简单说,就是可以将用户操作的体验通过问题对应的数值量化。...用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。
0x00 前言 视频号分享中【什么是用户画像】的文案,文字版分享给大家~内容虽然短,但是能锻炼在1分钟讲一个概念的能力,如果以后有朋友问你用户画像是什么,你可以用下面1分钟左右的文稿告诉他。...今天要和大家分享的话题是:用户画像。 0x01 画像 那么,什么是用户画像呢?我来举个例子说明: 假设你有一位朋友:他是一名35岁左右的男性,周六日喜欢宅在家里,而且每天点外卖。...那把上面这些标签和在一起,就形成了你朋友的用户画像,看一下,熟悉吗? 0x02 应用 那么有了这些画像之后,有什么用呢?
金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。金融服务正在从以产品为中心,转向以消费者为中心。...所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。...一、用户画像背后的原因 1、金融消费行为的改变,企业无法接触到客户 80后、90后总计共有3.4亿人口,并日益成为金融企业主要的消费者,但是他们的金融消费习惯正在改变,他们不愿意到金融网点办理业务,不喜欢被动接受金融产品和服务...数据仓库成为用户画像数据的主要处理工具,依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。...2)智能设备的位置信息,商业价值广大 智能手机设备的位置信息代表了消费者的位置轨迹,这个轨迹可以推测出消费者的消费偏好和习惯。
领取专属 10元无门槛券
手把手带您无忧上云