总第98篇 本篇讲解一些特征工程部分的特征选择(feature_selection),主要包括以下几方面: 特征选择是什么 为什么要做特征选择 特征选择的基本原则 特征选择的方法及实现 特征选择是什么...特征选择也称特征子集选择,是从现有的m个特征中选出对机器学习有用的n个特征(n特征维度减少计算量,同时也使模型效果达到最优。...为什么要做特征选择 在实际业务中,用于模型中的特征维度往往很高,几万维,有的一些CTR预估中维度高达上亿维,维度过高会增大模型计算复杂度,但是在这么多维数据中,并不是每个特征对模型的预测都是有效果的,所以需要利用一些方法去除一些不必要特征...特征选择的基本原则 我们在进行特征选择时,主要遵循如下两个原则: 波动性 相关性 波动性是指该特征取值发生变化的情况,用方差来衡量,如果方差很小,说明该特征的取值很稳定,可以近似理解成该特征的每个值都接近...,正则化的过程就可以看作是特征选择的一部分。
不相关或部分相关的特征可能会对模型性能产生负面影响。 在这篇文章中,您将会了解自动特征选择技术,您可以使用scikit-learn在Python中准备机器学习(所使用的)数据。 让我们开始吧。...[Feature-Selection-For-Machine-Learning-in-Python.jpg] Python中机器学习的特征选择 Baptiste Lafontaine的照片,保留一些权利...特征选择 特征选择是一个过程,您可以自动选择数据中您感兴趣的对预测变量或输出贡献(影响)最大的特征。...数据中不相关的特征会降低许多模型的精确度,特别是线性算法和逻辑回归等线性算法。 在对数据建模之前执行特征选择的三个好处是: 减少过度配合:减少冗余数据意味着根据噪音(noise)作出决定的机会减少。...您了解了使用scikit-learn在Python中准备机器学习数据的特征选择。
一、传统特征选择 传统特征选择(非因果特征选择)。定义:传统特征选择,也称为非因果特征选择,主要关注于从原始特征中识别出对预测模型构建或数据理解有用的特征子集。...需要可靠的方法来测试特征之间的独立性,这在实际应用中可能是一个挑战。 应用场景: 适用于需要因果解释的领域,如生物信息学、医疗诊断和社会科学。...在实际应用中,由于简单高效,传统特征选择方法得到了广泛应用,特别是在处理大量数据而计算资源有限的情况下。然而,在需要深入理解特征与目标变量之间因果关系时,因果特征选择方法则提供了更深层次的洞察。...尽管因果特征选择在数据集较小、维度较高时可能遭遇计算瓶颈,但传统特征选择方法则不受此限制。总的来说,在需要因果解释的场景,如疾病基因的识别或政策效果的评估中,因果特征选择具有显著优势。...然而,在数据预处理和快速模型构建等场景中,传统特征选择方法可能更为合适。
在本研究中,目标选择或拒绝功能是使用来自运动想象和P300电位的混合特征实现的。具体来说,为了选择感兴趣的目标,用户必须将注意力集中在一个闪烁的按钮上,以激发P300电位,同时保持运动想象的空闲状态。...在我们的脑-机接口系统中,用于目标选择或拒绝的混合特征可以被其他单一模型特征所取代,例如SSVEP。但是,出于以下两个原因,我们更喜欢混合特性。...首先,根据我们的实验结果,我们用于目标选择的混合特征获得了与文献[31]中描述的基于SSVEP的脑-机接口相似的性能。...在这项研究中,我们使用了三种不同目的的控制信号。具体地说,基于SMR的运动想象和P300分别用于控制光标的水平移动和垂直移动,并使用混合特征进行目标选择。然而,在当前实现中,控制信号中存在冗余。...我们的离线实验数据分析和在线实验结果证明了该方法的有效性,特别是证明了混合特征的有效性。使用在线实验中的混合特征,用户在2秒内完成每个目标选择,平均准确率为93.99%。
关于机器学习中的特征我有话要说 在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到机器学习不是唯有算法,机器学习是一个过程...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...这句话并不是很好理解,其实是讲在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。 ...总结以及注意点 这篇文章中最后提到了一点就是用特征选择的一点Trap。个人的理解是这样的,特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。...在机器学习=模型+策略+算法的框架下,特征选择就是模型选择的一部分,是分不开的。这样文章最后提到的特征选择和交叉验证就好理解了,是先进行分组还是先进行特征选择。
Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要。剔除那些不重要的指标。...sklearn.feature_selection模块中主要有以下几个方法: SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量...Recursive feature elimination:循环特征选择 不单独的检验某个变量的价值,而是将其聚集在一起检验。...通过该算法计算所有子集的validation error。选择error最小的那个子集作为所挑选的特征。 这个算法相当的暴力啊。...Tree-based feature selection:决策树特征选择 基于决策树算法做出特征选择 参考直通车:http://scikit-learn.org/stable/modules/feature_selection.html
关于机器学习中的特征我有话要说 在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到机器学习不是唯有算法,机器学习是一个过程,这样的过程包括数据处理...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...这句话并不是很好理解,其实是讲在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。 ...总结以及注意点 这篇文章中最后提到了一点就是用特征选择的一点Trap。个人的理解是这样的,特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。...在机器学习=模型+策略+算法的框架下,特征选择就是模型选择的一部分,是分不开的。这样文章最后提到的特征选择和交叉验证就好理解了,是先进行分组还是先进行特征选择。
这就是特征选择技术能够帮到我们的地方! 图 1:分类器性能和维度之间的关系 特征选择 有许多不同的方法可用于特征选择。...因此,只选择顶部的前几个特征,而放弃其他特征,可能创建一个准确度非常可观的模型。...如果两个特征之间的相关性大于 0,这意味着增加一个特征中的值也会增加另一个特征中的值(相关系数越接近 1,两个不同特征之间的这种联系就越强)。...如果两个特征之间的相关性小于 0,这意味着增加一个特征中的值将使减少另一个特征中的值(相关性系数越接近-1,两个不同特征之间的这种关系将越强)。...单变量选择 单变量特征选择是一种统计方法,用于选择与我们对应标签关系最密切的特征。
[puejlx7ife.png] 在文本分类中,特征选择是选择训练集的特定子集的过程并且只在分类算法中使用它们。特征选择过程发生在分类器的训练之前。...下面给出了选择k个最佳特征的基本选择算法(Manning等人,2008): [3xto1nf136.png] 在下一节中,我们将介绍两种不同的特征选择算法:交互信息和卡方(Chi Square)。...交互信息 C类中术语的互信息是最常用的特征选择方法之一(Manning等,2008)。就是衡量特定术语的存在与否对c作出正确分类决定的贡献程度。...卡方( 卡方检验) 另一个常见的特征选择方法是卡方(卡方检验)。统计学中使用x 2检验法主要是来测试两个事件的独立性。更具体地说,在特征选择中,我们使用它来测试特定术语的出现和特定类的出现是否独立。...因此,我们应该期望在所选择的特征中,其中一小部分是独立于类的。因此,我们应该期望在所选择的特征中,其中一小部分是独立于类的。
特征工程包括特征的提取,特征的预处理,特征的选择和特征的监控等内容。 本文我们聚焦如何使用sklearn中的feature_selection库来进行特征选择。...即如何从多个特征中选择出若干有效的特征。 二,特征选择概述 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。...常见的特征选择方法有以下两种: Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。...三,Filter过滤法 1,方差选择法 使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。 ? 2,相关系数法 使用相关系数法,先要计算各个特征对目标值的相关系数。...2,基于树模型的特征选择法 树模型中GBDT也可用来作为基模型进行特征选择,使用feature_selection库的SelectFromModel类结合GBDT模型,来选择特征的代码如下: ?
我的内核中有多个数据框,名称混乱(且太长)。 我的特征工程代码看起来很丑陋,散布在许多单元中。 当我直接开始使用SQL进行功能设计时,这些问题自然就会解决。...特征工程 这是繁重的部分。我直接在Sublime Text中编写SQL代码,然后将其粘贴到MySQL控制台中来调试代码。因为此数据集是一个事件日志,所以我们必须避免将来的信息泄漏到每个数据点中。...第一个代码段创建了一些必要的索引,以加快联接操作。接下来的四个代码片段将创建四个特征表。使用索引,大约需要20分钟(在本地计算机上还不错)。 现在,您应该在数据库中具有以下表格。...您可以调整每个特征的比例和缺失值,以适合您模型的要求。 对于不变于特征缩放的基于树的方法,我们可以直接应用模型,仅关注调整参数。 很高兴看到,除了类别 功能以外,所有有用的功能都是经过精心设计的 。...我们的努力得到了回报!同样,事件2的最具预测性的特征是在事件2中观察到了多少个空值。这是一个说明性案例 ,其中我们无法用中值或平均值替换空值,因为缺少空值的事实与响应变量相关!
我们能用PCA来进行特征选择吗? 前向特征选择和后向特征选择的区别是什么? 01 什么是特征选择,为何重要? 特性选择是选择与ML模型更加一致、非冗余和更相关的基本特性的过程。...更多特征使模型变得更加复杂,并带来维度灾难(误差随着特征数量的增加而增加)。 02 特征选择方法有哪些? 有两种常见的方法可以处理特征选择: 1、前向特征选择。...咨询并询问行业的专家哪些特征是必要的;例如,在金融科技数据集的例子中可能需要咨询每天执行贷款评估的信贷员。...: sfs.fit(X, y) sfs.k_feature_names_ 返回并查看ML任务应该使用的最佳特性: 通过比较每个训练步骤中的性能和特征数量来了解选择过程。...还可以看到所选择的模型度量在迭代步骤中不会发生很大的变化。
则公式为: 在计算过程中,使用所有特征划分数据集D,得到多个特征划分数据集D的信息增益(列表)。从这些信息增益中选择最大的,因而当前结点的划分特征便是使信息增益最大的划分所使用的特征。...说明在决策树构建的过程中我们总是希望集合往最快到达纯度更高的子集合方向发展,因此我们总是选择使得信息增益最大的特征来划分当前数据集D。 信息增益偏向取值较多的特征。...基于以上特点,在使用增益信息比时,并不是直接选择信息增益率最大的特征,而是现在候选特征中找出信息增益高于平均水平的特征,然后在这些特征中再选择信息增益率最高的特征。...这篇文章的标题是《决策树的特征选择》,特征选择也就是选择最优划分属性,从当前数据的特征中选择一个特征作为当前节点的划分标准。...我们希望在不断划分的过程中,决策树的分支节点所包含的样本尽可能属于同一类,即节点的“纯度”越来越高。 而选择最优划分特征的标准(上面介绍的这些概念)不同,也导致了决策树算法的不同。
数据挖掘中,特征选择的过程就是计算特征与样本观测结果的相关性。卡方检验和互信息是用得较多的计算方法。 1. 卡方检验 卡方检验有多种方法,最著名的就是皮尔逊卡方检验[1]。...依据研究者设定的置信水准,查出自由度为df的卡方分配临界值,比较它与第1步骤得出的 X2 统计值,推论能否拒绝虚无假设 其中,虚无假设 H0 一个样本中已发生事件的次数分配会遵守某个特定的理论分配。...在虚无假设的句子中,事件必须互斥,也就是说在概率事件中相互独立,即几率之和等于1。 统计值 X2 的计算公式为: ? 其中 r 是样本数(行数),c 是特征数(列数)。...互信息 在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度[2]。...首先,信息熵的定义为: ? 其中 I(xi) 又称 i 的自信息。熵表征的是信息的不确定性,它假设一份信息中,随机性的事件越多,则信息量越大,计算出的熵也就越大。
局部放电是电力设备监测中的一种很重要的方法。本文将以局部放电为例,具体阐述feature selection。...具体包括L1-regularization、sequential feature selection和random forest这三种特征选择的方法。...局部放电在电力设备的检测中应用很广泛,通过局部放电的情况,可以判断设备故障情况与老化状态。 本文将选择部分局部放电数据,通过各种不同的特征选择方法,选择出来合适的局放特征信号。...特征选择概述 在机器学习中,有一句名言: rubbish in, rubbish out 这句话强调的是,无论多么强大的模型,都需要好的数据,好的数据的一个重要的特征就是这个数据跟需要解决的问题关联性大...validation集上的精度 特征的p值 下面是用logistic regression模型,通过测试集上的分类精度,选择出的特征信息: ['pd_location' 'signal_width'
:https://arxiv.org/pdf/2309.02064.pdf 会议:CIKM 2023 代码:https://github.com/dudwns511/MvFS_CIKM23 1 引言 特征选择是推荐系统中的重要技术...,最新的研究中,自适应特征选择(AdaFS)因其可自适应地为每个数据实例选择特征,在推荐系统中表现良好的性能。...2.3 多视角特征选择网络 MvFS提出带有新控制器的多视图特征选择网络,该控制器旨在选择信息丰富的特征,同时避免对少数主要特征模式的偏见,如图所示。...为解决这个问题,本文采用专家混合的想法,利用由多个不同子网络组成的分而治之策略,每个子网络都学习处理输入空间的一部分。...为了在探索和利用之间取得平衡,在训练过程中采用从软选择到硬选择的逐步过渡。在早期阶段,推荐模型通过软选择探索各种特征组合。
面向医学生/医生的实用机器学习教程 变量选择(特征选择,feature selection) ,是机器学习领域非常重要的问题,到底哪些变量是有用的,哪些是不重要的,可以删除的,怎么选才能提高模型表现,...需要注意,这里介绍的变量选择方法可以用在临床预测模型中,但是和大家常见的先单因素后多因素这种完全不是一个概念,虽然它们的目的相同,都是为了提高模型表现。...数据的维度就是自变量(预测变量) 特征选择是特征工程中非常重要的一部分内容,特征选择的方法非常多,主要可以分为以下3类,每个大类下又会细分为好多具体的方法,有机会慢慢介绍......tidymodels中的特征选择很不完善,不如mlr3做得好,也不如caret做得好!...已经看到tidymodels的开发者有计划增加特征选择的这部分特性,但不知何时实现... 总的来说,想要在R中完整实现以上三种方法,一言难尽.....
这是数据科学中的一个哲学问题。我们应该使用什么特征选择方法:精挑细选的还是详尽所有的?答案是“看情况”。...这里的“精挑细选”指的是选择一小部分能够很好解释的有意义的功能;“详尽所有”是指在数据集中选择所有可能的特征组合。在大多数的数据科学家眼中,至少在大多数情况下,过于复杂并没有帮助。...通过以上的结论,你可能会得出结论,我喜欢精心挑选的特征。但这并不完全正确。在本文中,我将比较这两种特性选择方法,并帮助您决定应该在何处选择它们。...我解释了几种场景的不同之处,以帮助您确定如何为自己的项目选择特性选择方法。 可解释性 场景1:“您正在一家大型企业中从事一个数据科学项目。你的经理和其他利益相关者对机器学习及其潜力没有深入的了解。...然后,当你深入了解问题,与其他利益相关者建立信任,以及开发好可靠的ML流程后,可以切换到详尽的特征中。特征选择中的详尽方法使您可以在数据允许的范围内最大限度地提高模型性能。
导言 在机器学习任务中,特征选择是提高模型性能和减少过拟合的重要步骤之一。LightGBM作为一种高效的梯度提升决策树算法,提供了内置的特征重要性评估功能,帮助用户选择最重要的特征进行模型训练。...本教程将详细介绍如何在Python中使用LightGBM进行特征选择与重要性评估,并提供相应的代码示例。 加载数据 首先,我们需要加载数据集并准备数据用于模型训练。...根据特征重要性评估结果,我们可以选择最重要的特征用于模型训练。...我们加载了数据集并准备了数据,然后训练了一个基础模型并得到了特征的重要性评估结果。最后,我们根据特征重要性选择了最重要的特征用于模型训练。...通过这篇博客教程,您可以详细了解如何在Python中使用LightGBM进行特征选择与重要性评估。您可以根据需要对代码进行修改和扩展,以满足特定的特征选择和模型训练需求。
领取专属 10元无门槛券
手把手带您无忧上云