df['Time'].str[0:8]
# 随机取num行
ins_1 = df.sample(n=num)
# 数据去重
df.drop_duplicates(['grammer'])
# 按某列排序...URL,字符串或文件,并将表提取到数据帧列表
pd.read_clipboard() # 获取剪贴板的内容并将其传递给 read_table()
pd.DataFrame(dict) # 从字典中,列名称的键...升序对值进行排序
df.sort_values(col2,ascending=False) # 按col2 降序对值进行 排序
df.sort_values([col1,col2],ascending...=[True,False]) #按 col1 升序排序,然后 col2 按降序排序
df.groupby(col) #从一个栏返回GROUPBY对象
df.groupby...'广东广州'],
'电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'],
'收入