首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于深度学习的遥感图像地物变化检测综述

    遥感(Remote Sensing,缩写为RS)是指非接触式、远距离的探测技术。遥感技术通常使用航空航天平台、按照特定的波段对地球或其他天体进行成像观测,通过分析观测数据,探测地球或其他天体资源与环境。遥感技术在现代化社会中十分重要,它能够在一定程度上体现一个国家的经济实力和科技水平,故一直受到世界大国的高度重视。自从美国的陆地卫星Landat-1和法国的SPOT-1卫星相继升空,世界进入了高分辨率遥感技术发展和应用的新时代。2001年,美国发射的QuickBird卫星可采集分辨率为0.61m/像素的全彩色图像和2.44m/像素的多光谱图像,标志着世界进入“亚米级”高空间分辨率[2]遥感时代。在20世纪80年代后,我国遥感技术也进入飞速发展时期。风云气象卫星和资源系列卫星的成功发射为我国卫星遥感事业的发展奠定了坚实的基础。2006年到2016年间,我国陆续将遥感卫星一号到遥感卫星三十号共30个卫星送入太空,这些卫星在我国国土资源普及、防灾减灾等领域发挥了重要的作用。2013年到2018年间,我国相继将高分一号到高分六号等高分辨率卫星送入太空,其在国土统计、城市规划、路网设计、农作物估计和抗灾救援等领域取得了突出的成就。

    02

    基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法

    粒子群算法(particle swarm optimization,PSO)是计算智能领域一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法就是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。 假设在一个 D D D维的搜索空间中,由 n n n个粒子组成的种群 X = ( X 1 , X 2 , ⋯   , X n ) \boldsymbol{X}=(X_1,X_2,\dotsm,X_n) X=(X1​,X2​,⋯,Xn​),其中第 i i i个粒子表示为一个 D D D维的向量 X i = ( X i 1 , X i 2 , ⋯   , X i D ) T \boldsymbol{X_i}=(X_{i1},X_{i2},\dotsm,X_{iD})^T Xi​=(Xi1​,Xi2​,⋯,XiD​)T,代表第 i i i个粒子在 D D D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置 X i \boldsymbol{X_i} Xi​对应的适应度值。第 i i i个粒子的速度为 V = ( V i 1 , V i 2 , ⋯   , V i D ) T \boldsymbol{V}=(V_{i1},V_{i2},\dotsm,V_{iD})^T V=(Vi1​,Vi2​,⋯,ViD​)T,其个体最优极值为 P i = ( P i 1 , P i 2 , ⋯   , P i D ) T \boldsymbol{P_i}=(P_{i1},P_{i2},\dotsm,P_{iD})^T Pi​=(Pi1​,Pi2​,⋯,PiD​)T,种群的群体最优极值为 P g = ( P g 1 , P g 2 , ⋯   , P g D ) T \boldsymbol{P_g}=(P_{g1},P_{g2},\dotsm,P_{gD})^T Pg​=(Pg1​,Pg2​,⋯,PgD​)T。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 V i d k + 1 = ω V i d k + c 1 r 1 ( P i d k − X i d k ) + c 2 r 2 ( P g d k − X i d k ) (1) V_{id}^{k+1}=\omega V_{id}^k+c_1r_1(P_{id}^k-X_{id}^k)+c_2r_2(P_{gd}^k-X_{id}^k)\tag{1} Vidk+1​=ωVidk​+c1​r1​(Pidk​−Xidk​)+c2​r2​(Pgdk​−Xidk​)(1) X i d k + 1 = X i d k + V k + 1 i d (2) X_{id}^{k+1}=X_{id}^k+V_{k+1_{id}}\tag {2} Xidk+1​=Xidk​+Vk+1id​​(2)其中, ω \omega ω为惯性权重; d = 1 , 2 , ⋯   , n d=1,2,\dotsm,n d=1,2,⋯,n; k k k为当前迭代次数; V i d V_{id} Vid​为粒子的速度; c 1 c_1 c1​和 c 2 c_2 c2​是非负的常数,称为加速度因子; r 1 r_1 r1​和 r 2 r_2 r2​是分布于 [ 0 , 1 ] [0,1] [0,1]区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间 [ − X m a x , X m a x ] [-X_{max},X_{max}] [−Xmax​,Xmax​]、 [ − V m a x , V m a x ] [-V_{max},V_{max}] [−Vmax​,Vmax​]。

    03
    领券