【新智元导读】 训练神经网络的算法有成千上万个,最常用的有哪些,哪一个又最好?作者在本文中介绍了常见的五个算法,并从内存和速度上对它们进行对比。最后,他最推荐莱文贝格-马夸特算法。 用于神经网络中执行学习过程的程序被称为训练算法。训练算法有很多,各具不同的特征和性能。 问题界定 神经网络中的学习问题是以损失函数f的最小化界定的。这个函数一般由一个误差项和一个正则项组成。误差项评估神经网络如何拟合数据集,正则项用于通过控制神经网络的有效复杂性来防止过拟合。 损失函数取决于神经网络中的自适应参数(偏差和突触权值
选自 Neuraldesigner 作者:Alberto Quesada 机器之心编译 参与:蒋思源 在神经网络中,系统的学习过程一般是由训练算法所主导。而现如今有许多不同的学习算法,它们每一个都有不同的特征和表现。因此本文力图描述清楚五大学习算法的基本概念及优缺点,给读者们阐明最优化在神经网络中的应用。 问题形式化 神经网络中的学习过程可以形式化为最小化损失函数问题,该损失函数一般是由训练误差和正则项组成。误差项会衡量神经网络拟合数据集的好坏,也就是拟合数据所产生的误差。正则项主要就是通过给特征权重增加罚
作者: Alberto Quesada 译者: KK4SBB 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同。 问题的抽象 人们把神经网络的学习
来源:DeepHub IMBA本文约1800字,建议阅读10分钟本文利用可视化方法,为你直观地解析牛顿迭代法。 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 以 Isaac Newton 和 Joseph Raphson 命名的 Newton-Raphson 方法在设计上是一种求根算法,这意味着它的目标是找到函数 f(x)=0 的值 x。在几何上可以将其视为 x
常用机器学习算法汇总比较的最后一篇,介绍提升(Boosting)算法、GBDT、优化算法和卷积神经网络的基本原理、优缺点。
决策树算法 根据数据属性,采用树状结构建立决策模型。常用来解决分类和回归问题。 常见算法:CART(Classification And Regression Tree),ID3,C4.5,随机森林等 回归算法 对连续值预测,如逻辑回归LR等 分类算法 对离散值预测,事前已经知道分类,如k-近邻算法 聚类算法 对离散值预测,事前对分类未知,如k-means算法 神经网络 模拟生物神经网络,可以用来解决分类和回归问题 感知器神经网络(Perceptron Neural Network) ,反向传递(Back Propagation)和深度学习(DL) 集成算法 集成几种学习模型进行学习,将最终预测结果进行汇总 Boosting、Bagging、AdaBoost、随机森林 (Random Forest) 等
我们知道,梯度下降算法是利用梯度进行一阶优化,而今天我介绍的牛顿优化算法采用的是二阶优化。本文将重点讲解牛顿法的基本概念和推导过程,并将梯度下降与牛顿法做个比较。
机器学习的优化(目标),简单来说是:搜索模型的一组参数 w,它能显著地降低代价函数 J(w),该代价函数通常包括整个训练集上的性能评估(经验风险)和额外的正则化(结构风险)。与传统优化不同,它不是简单地根据数据的求解最优解,在大多数机器学习问题中,我们关注的是测试集(未知数据)上性能度量P的优化。
算法检查 gradient check sanity check other check 一阶算法 Adagrad momentum nag rmsprop 总结 二阶算法 牛顿法 拟牛顿法 参考 神
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/80821760
神经网络的训练过程实质是得到最优化目标函数的过程,常见的目标函数MSE Loss、Cross Entropy Loss、NLL Loss等,网络训练过程就是最小化Loss的过程。Loss可以理解为模型预测值与真实值之间的差距。一般这些Loss函数是凸函数,可以使用最优化的相关算法最小化Loss,具体包括随机梯度下降、共轭梯度下降、牛顿法、拟牛顿法等。归功于神经网络的backward过程,使得梯度相关的搜索算法得以应用。下面简单介绍神经网络训练过程的几种优化方法。 一.基本算法 一阶优化算法 1.梯度下降 假
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
优化通常是一个极其困难的问题。传统的机器学习会小心设计目标函数和约束。以确保优化问题是凸的,从而避免一般优化问题的复杂度。在训练神经网络时,我们肯定会遇到一般的非凸情况。即使是凸优化,也并非没有任何问题。
本系列的上一篇文章介绍了随机梯度下降,以及如何应对陷入局部极小值或鞍点的问题。在这篇文章中,我们将查看另一个困扰神经网络训练的问题,病态曲率。
生活中经常看到各种各样奇妙现象,给人呈现出美感,在欣赏美景的同时偶尔会想它们中蕴含的基本原理,比如说:树木为什么会分叉(跟分形是否能联系起来)、石头扔进池塘为何会是环形波纹等等,从通俗的角度来说,树木向上生长可以理解为改变自身的形状,使得接收到的太阳能最多,一石激起千层浪体现为石头与池塘中水相互碰撞后,如何改变水的分布(能量分布),使得石头和水组合成系统后能量趋于最小的过程(最小势能原理),冥冥之中,一直相信树木和池塘中的水都是处于最优状态(均衡),有没有统一的一种方法去研究这些问题。
现在对应到我们的DNN模型之中,即输入层有n_in个神经元,输出层有n_out个神经元,再加上一些含有若干个神经元的隐含层。此时我们需要找到所有隐含层和输出层所对应的线性系数矩阵W、偏倚向量b,希望通
是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点\nabla 是梯度,\alpha是学习率或者步长
https://blog.csdn.net/u011239443/article/details/80046684
线性回归:进行直线或曲线拟合,一般使用“最小二乘法”来求解。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。 但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。
到了6月的时候,找了本科的数学教材开始微积分,线性代数和概率论的复习。主要挑选一些算法学习中常用的知识点进行回顾,如:偏微分、泰勒展开、拉格朗日函数、傅里叶变换,矩阵这块的逆矩阵、特征值与特征向量、二次型、奇异值分解、QR分解,以及概率论这块的各种分布(高斯分布和伯努利分布较重要)、概率密度、贝叶斯定理等等。同时也通过公众号文章关注到了SIGAI,在更新的文章中对很多知识可以有很好的巩固,比如:梯度下降法、SVM综述、神经网络中的各种激活函数、人脸检测算法综述、理解凸优化、牛顿法和拟牛顿法、卷积网络压缩加速、生成对抗网络等等很多和机器学习深度学习相关的知识汇总。然后为了巩固提高自己的机器学习和深度学习知识水平,就报名了SIGAI的课程。同时买了《机器学习》(西瓜书),《统计学习方法》,《深度学习》(花书)进行学习。在SIGAI的课程里,我所重点学习的部分是最优化方法,机器学习方法的原理和推导以及深度学习里的神经网络原理这一块。期间对照着书,自己学习着推导过一遍,然后跟着课程和雷老师又巩固一遍原理推导。因为这些在面试里被问到或者是手推的频率很高。
优化问题一般可分为两大类:无约束优化问题和约束优化问题,约束优化问题又可分为含等式约束优化问题和含不等式约束优化问题。
小编找到了一些自己获得offers的面试的经验,特此分享给大家!希望对你们有帮助!
无约束最优化问题求解方法的学习笔记 神经网络中的学习过程可以形式化为最小化损失函数问题, 该损失函数一般是由训练误差和正则项组成 损失函数的一阶偏导为 损失函数二阶偏导可以使用海塞矩阵 Hessian Matrix H\mathbf{H}H 表示, 其中每个权重向量 iii 的元素 jjj 的二阶偏导数为 一阶求解方法有 SGD Adam RMSProp 等,利用梯度(超平面)的信息求解,计算高效,收敛稍慢,需要超参数。 二阶求解方法有牛顿法,拟牛顿法,BFGS,L-BFGS 等,用二阶梯度(超曲面)
本文主要是从通俗直观的角度对机器学习中的无约束优化算法进行对比归纳,详细的公式和算法过程可以看最后附的几个链接,都是干货。 机器学习基本概念 统计机器学习整个流程就是:基于给定的训练数据集,由实际需求,需要解决的问题来选择合适的模型;再根据确定学习策略,是最小化经验风险,还是结构风险,即确定优化目标函数;最后便是采用什么样的学习算法,或者说优化算法来求解最优的模型。参照《统计机器学习方法》所讲,统计机器学习(特指有监督学习)的三要素为: 1)模型 模型是指基于训练数据集,所要学习到的概率分布
01 大数据的定义 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据是一个笼统的概念暂未发现和准确的定义。 大数据的核心是利用数据的价值,机器学习是利用数据价值的关键技术,对于大数据而言,机器学习是不可或缺的。相反,对于机器学习而言,越多的数据会越 可能提升模型的精确性,同时,复杂的机器学习算法的计算时间也迫切需要分布式计算与内存计算这样的关键技术。因此,
作者:YCM1101743158 来源: http://blog.csdn.net/ycm1101743158/article/details/70158767 大数据的定义 大数据(b
@LeftNotEasy,本题解析来源:http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic_in_machine_learning_1_regression_and_gradient_descent.html
,y的取值范围是[-∞, +∞]。因其简单而受到工业界的关注。Y的取值范围过大,一般要把结果进行正则化,限定在[0,1]。所以需要把结果带入非线性变换Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果我们设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类了。
第一部分:深度学习 下载PDF版请点击阅读原文 1、神经网络基础问题 (1)BP,Back-propagation(要能推倒) 后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法
后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法则对参数进行一层一层的求导。这里重点强调:要将参数进行随机初始化而不是全部置0,否则所有隐层的数值都会与输入相关,这称为对称失效。 大致过程是:
一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内找工作的同学,阅读这篇文章,对加深和巩固机器学习和深度学习的知识也是非常有用的。
梯度检验与高级优化 导读 神经网络 反向传播算法 目录 关键词 梯度检验与高级优化 1 关键词 缺位错误 off-by-one error 偏置项 bias term 数值检验 numerically checking 数值舍入误差 numerical roundoff errors 有效数字 significant digits 组合扩展 unrolling 学习率 learning rate 汉森矩阵 Hessian matrix 牛顿法 Newton's method 共轭梯度 conjugate
AI100 已经引入 Hugo Larochelle 教授的深度学习课程,会每天在公众号中推送一到两节课,并且对视频中的 PPT 进行讲解。课后,我们会设计一系列的问题来巩固课程中的知识。本节课是
原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。
作者灯会为21届中部985研究生,凭借自己整理的面经,去年在腾讯优图暑期实习,七月份将入职百度cv算法工程师。在去年灰飞烟灭的算法求职季中,经过30+场不同公司以及不同部门的面试中积累出了CV总复习系列,此为深度学习上篇。
1)线性回归:进行直线或曲线拟合,一般使用“最小二乘法”来求解。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。
在2020年还在整理XGB的算法,其实已经有点过时了。不过,主要是为了扩大知识面和应付面试嘛。现在的大数据竞赛,XGB基本上已经全面被LGB模型取代了,这里主要是学习一下Boost算法。之前已经在其他博文中介绍了Adaboost算法和Gradient-boost算法,这篇文章讲解一下XGBoost。
来源:雷锋网、AI研习社本文约3100字,建议阅读9分钟本文为你介绍如何将数据转换成正态分布来建立模型。 在这篇文章中,我们讨论另外一个困扰神经网络训练的问题,病态曲率。 虽然局部极小值和鞍点会阻碍我们的训练,但病态曲率会减慢训练的速度,以至于从事机器学习的人可能会认为搜索已经收敛到一个次优的极小值。让我们深入了解什么是病态曲率。 病态曲率 考虑以下损失曲线图。 **病态曲率** 如你所知,我们在进入一个以蓝色为标志的像沟一样的区域之前是随机的。这些颜色实际上代表了在特定点上的损失函数的值,红色代表
本文《反向传播算法推导-全连接神经网络》系SIGAI原创,只供学习使用,未经允许,不得转载,不得用于商业用途。如需获取PDF全文,可搜索关注公众号SIGAICN。(http://suo.im/4JJ6Ke)
在另一篇文章中,我们讨论了随机梯度下降的具体细节,以及如何解决诸如卡在局部极小值或鞍点上的问题。在这篇文章中,我们讨论另外一个困扰神经网络训练的问题,病态曲率。
用于深度模型训练的优化算法与传统的优化算法在几个方面有所不同。机器学习通常是简接作用的,再打所述机器学习问题中,我们关注某些性能度量P,其定义于测试集上并且可能是不可解的。因此,我们只是间接地优化P,我们希望通过降低代价函数
梯度下降法沿着梯度的反方向进行搜索,利用了函数的一阶导数信息。梯度下降法的迭代公式为:
按要求转载自云栖社区 ID:yunqiinsight 作者 | doflamingo 序 读书期间对于深度学习也有涉及,不过只是皮毛,在这个数据和算法的时代,也需要更加贴近算法。于是从一名工程师角度出发,希望通过几篇文章,将深度学习基础记录下来,同时也是对于自己学习的总结和积累。总体思路是ANN-CNN-DNN,中间想起来有什么忘记的,也会加番。 神经网络概述 这是一张典型的人工神经网络的图,图中的节点称为神经元,图共分为三层,第一层为输入层,第二层为隐藏层,第三层为输出层。输入层接受外部世界的输入,具像
领取专属 10元无门槛券
手把手带您无忧上云