首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用预先训练网络和特征抽取大力提升图像识别

任何人工智能项目,在数据不足面前都会巧妇难为无米之炊,算法再精巧,只要数据量不足,最后的效果都不尽如人意,我们目前正在做的图像识别就是如此,要想让网络准确的识别猫狗图片,没有几万张图片以上是做不到的。...由于别人做出的网络肯定跟我们自己面对的应用场景有所区别,所以在使用时,我们必须对其进行相应改造,常用的方法有特征抽取和参数调优,我们分别就这两种方法进行深入讨论。 我们先看所谓的特征抽取。...,接下来我们就可以吧抽取的特征输入到我们自己的神经层中进行分类,代码如下: train_features = np.reshape(train_features, (2000, 4 * 4 * 512)...上面的方法叫特征提取,还有一种方法叫参数调优。...特征提取时,我们把图片输入VGG16的卷积层,让他直接帮我们把图片中的特征提取出来,我们并没有通过自己的图片去训练更改VGG16的卷积层,参数调优的做法在于,我们会有限度的通过自己的数据去训练VGG16

82451
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    特征工程之特征缩放&特征编码

    (上) 特征工程之数据预处理(下) 本篇文章会继续介绍特征工程的内容,这次会介绍特征缩放和特征编码,前者主要是归一化和正则化,用于消除量纲关系的影响,后者包括了序号编码、独热编码等,主要是处理类别型、文本型以及连续型特征...---- 3.2 特征缩放 特征缩放主要分为两种方法,归一化和正则化。...本质是因为独热编码之后的特征的表达能力较差。该特征的预测能力被人为的拆分成多份,每一份与其他特征竞争最优划分点都失败。最终该特征得到的重要性会比实际值低。...那么什么时候需要采用特征离散化呢? 这背后就是需要采用“海量离散特征+简单模型”,还是“少量连续特征+复杂模型”的做法了。 对于线性模型,通常使用“海量离散特征+简单模型”。...假设有连续特征j ,离散化为 N个 0/1 特征;连续特征 k,离散化为 M 个 0/1 特征,则分别进行离散化之后引入了 N+M 个特征

    1.4K20

    特征工程之特征表达

    特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。...主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理,离散特征的连续化和离散化处理,连续特征的离散化处理几个方面。 1....对地理特征,比如“广州市天河区XX街道XX号”,这样的特征我们应该如何使用呢?处理成离散值和连续值都是可以的。如果是处理成离散值,则需要转化为多个离散特征,比如城市名特征,区县特征,街道特征等。...处理方法其实比较简单,比如某特征的取值是高,中和低,那么我们就可以创建三个取值为0或者1的特征,将高编码为1,0,0这样三个特征,中编码为0,1,0这样三个特征,低编码为0,0,1这样三个特征。...比如对于用户的ID这个特征,如果要使用独热编码,则维度会爆炸,如果使用特征嵌入就维度低很多了。对于每个要嵌入的特征,我们会有一个特征嵌入矩阵,这个矩阵的行很大,对应我们该特征的数目。

    86030

    图像识别——突破与应用

    在更高层次上,有两种不同的技术方法能够解决图像识别任务。 第一种方法(我们称之为传统图像识别)的重点在于从图像中查找和提取人工设计的特征(如边缘,角落,颜色)以帮助分类对象。...自80年代和90年代以来,传统的图像识别方法通常通过从图像中提取一系列特征来实现,实际上通过多年的实验和分析手动编码。然后使用学习算法来基于这些人工设计特征来识别图像中的对象。...在第二种方法中,目标仍然是提取帮助识别图像中的对象的特征。然而,它不是利用人工设计的特征,而是利用自动化程序从原始图像像素数据中“学习”这些显着的特征。学习使用大量的图像进行。...用于图像识别的性能最好的深度神经网络被称为“卷积神经网络”(以下称为CNN)。与传统的多层神经网络相比,CNN具有一些特殊的性质,使他们能够自动学习相关的特征。...在训练结束后,CNN 学习了一组更加抽象的特征来表示图像。然后将这些特征用作分类算法的输入,通常是输出层之前的完全连接的ANN,以识别图像。下图描绘了用于人脸识别的深层神经网络和多层。

    14.4K113

    智能视频图像识别

    智能视频图像识别系统选用人工智能识别算法技术,能够随时监控和剖析现场各大品牌相机中的视频图像。...智能视频图像识别系统软件关键运用相机拍摄的图像开展智能实时分析,抓拍监控识别和检作业现场的违规操作及行为,并向责任人推送信息。...与传统监控系统软件对比,智能视频图像识别系统软件增强了自主监控报警的能力,增强了数据检测和解析功能。智能视频图像识别系统具备很大的经济价值和广泛的应用领域,引起了国内外研究工作人员的广泛关注。...智能视频图像识别识别系统实现了下列识别优化算法:(1)施工作业安全帽子识别(2)混色+响应式工作服装识别(3)未系安全带高处作业识别(4)超长距离地区警示(5)浓烟+明火识别(6)睡岗识别(7)手机识别...智能视频图像识别可应用于全部必须生产安全/工程施工的场地,包含在建工地、在建地铁/铁路线/道路、新建加工厂和经营加工厂、煤矿业和工作船,给施工作业产生很大的方便。

    5.7K40

    特征工程之特征选择

    后面还有两篇会关注于特征表达和特征预处理。 1....特征的来源     在做数据分析的时候,特征的来源一般有两块,一块是业务已经整理好各种特征数据,我们需要去找出适合我们问题需要的特征;另一块是我们从业务特征中自己去寻找高级数据特征。...选择合适的特征     我们首先看当业务已经整理好各种特征数据时,我们如何去找出适合我们问题需要的特征,此时特征数可能成百上千,哪些才是我们需要的呢?     ...寻找高级特征     在我们拿到已有的特征后,我们还可以根据需要寻找到更多的高级特征。比如有车的路程特征和时间间隔特征,我们就可以得到车的平均速度这个二级特征。...根据车的速度特征,我们就可以得到车的加速度这个三级特征,根据车的加速度特征,我们就可以得到车的加加速度这个四级特征。。。也就是说,高级特征可以一直寻找下去。

    1.1K20

    特征工程(中)- 特征表达

    在本篇中我们聊一下特征表达(或者说特征编码)的问题,即从这些选定的维度,如何去刻画特定的对象。 01 特征表达要考虑哪些方面?...从一个完整的机器学习任务来看,在选择完特征之后,特征表达的任务就是要将一个个的样本抽象成数值向量,供机器学习模型使用。因此,特征表达就要兼顾特征属性和模型需求这两个方面。...特征属性 特征按其取值类型不同,可以简单分为连续型和离散型。而离散型特征,又可以分为类别型和序列型。下面依次简要说明。 连续型特征:取值为连续实数的特征。 比如,身高,175.4cm。...04 特殊特征的处理 有时候,根据模型的需要,需要对一些特征做特殊处理。这里以时间特征和地理特征为例,进行说明。 对时间特征,有时候模型用到的并不是其绝对量,而是相对量,这个情况下就需要求差值。...小结 本文在特征选择的基础上,进一步讨论了特征表达的问题,主要涉及连续和离散型特征的编码方式、特殊特征的处理和缺失值处理等方面。

    69230

    传统特征:HOG特征原理

    这样,一个block内所有cell的特征向量串联起来便得到该block的HOG特征。这些区间是互有重叠的,这就意味着:每一个单元格的特征会以不同的结果多次出现在最后的特征向量中。...则一块的特征数为:3*3*9; (5)收集HOG特征 最后一步就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。 (6)那么一个图像的HOG特征维数是多少呢?...Dalal提出的Hog特征提取的过程:把样本图像分割为若干个像素的单元(cell),把梯度方向平均划分为9个区间(bin),在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个9维的特征向量...,每相邻的4个单元构成一个块(block),把一个块内的特征向量联起来得到36维的特征向量,用块对样本图像进行扫描,扫描步长为一个单元。...最后将所有块的特征串联起来,就得到了人体的特征

    1.3K30

    特征选择与特征抽取

    .也就是说,特征抽取后的新特征是原来特征的一个映射。...也就是说,特征选择后的特征是原来特征的一个子集。 2....相同点和不同点 特征选择和特征抽取有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:特征抽取的方法主要是通过属性间的关系...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...总结 特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。在机器学习=模型+策略+算法的框架下,特征选择就是模型选择的一部分,是分不开的。

    1.7K31

    特征工程|空间特征构造以及文本特征构造

    由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 那特征工程是什么?...特征工程是利用数据领域的相关知识来创建能够使机器学习算法达到最佳性能的特征的过程。...(特征构造)等子问题,本章内容主要讨论特征构造的方法。...创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。 ——Andrew Ng 0x01 特征构造介绍 空间特征构造以及文本特征构造具体方法: ?...适用范围:只有一个词语或者包含多个词语的特征。例子: 只有一个词语的特征:职业。 有多个词语的特征:用户兴趣特征为“健身 电影 音乐”。

    1.3K10
    领券