首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

盘点13种流行的数据处理工具

04 Pig Pig通常用于处理大量的原始数据,然后再以结构化格式(SQL表)存储。Pig适用于ETL操作,如数据验证、数据加载、数据转换,以及以多种格式组合来自多个来源的数据。...Pig的Latin脚本包含关于如何过滤、分组和连接数据的指令,但Pig并不打算成为一种查询语言。Hive更适合查询数据。Pig脚本根据Pig Latin语言的指令,编译并运行以转换数据。...05 Hive Hive是一个开源的数据仓库和查询包,运行在Hadoop集群之上。SQL是一项非常常见的技能,它可以帮助团队轻松过渡到大数据世界。...它支持ANSI SQL标准,该标准很容易学习,也是最流行的技能集。Presto支持复杂的查询、连接和聚合功能。...11 Amazon Athena Amazon Athena是一个交互式查询服务,它使用标准ANSI SQL语法在Amazon S3对象存储上运行查询。

2.6K10

AWS培训:Web server log analysis与服务体验

您可以使用 AWS Glue 控制台发现数据,转换数据,并使数据可用于搜索和查询。控制台调用底层服务来协调转换数据所需的工作。...SQL 直接分析 Amazon S3 中的数据。...只需在 AWS 管理控制台中单击几下,客户即可将 Athena 指向自己在 S3 中存储的数据,然后开始使用标准 SQL 执行临时查询并在数秒内获取结果。...Athena 没有服务器服,因此没有需要设置或管理的基础设施,客户只需为其执行的查询付费。您可以使用 Athena 处理日志、执行即席分析以及运行交互式查询。...Athena 可以自动扩展并执行并行查询,因此可快速获取结果,对于大型数据集和复杂查询也不例外。

1.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    寻觅Azure上的Athena和BigQuery(一):落寞的ADLA

    得到的查询结果为: ? 嗯,看上去AWS Athena轻松地完成了我们的分析任务。 接下来则轮到Azure出场了。...其主要支持的查询语言是U-SQL,一个结合了SQL与C#特点的独有语言。 百闻不如一见,我们还是直接动手尝试一下,使用ADLA来实现上面Athena的同样任务。...任务(Job)是ADLA中的核心概念,我们可以新建一个任务,配以一段U-SQL脚本来表达和前面Athena例子中SQL相同的语义:(ADLA没有交互式查询窗口,所以我们把结果落地存储到一个csv文件中)...我们的脚本中没有使用外部表(U-SQL中外部表仅支持SQLServer系数据库)但通过Extractors.Csv方法达到了同样的目的。...作为第二种方法,我们可以借助源自SQL Server体系的一项神奇技术。欲知详情如何,且听下回分解。

    2.4K20

    Apache Hudi 0.14.0版本重磅发布!

    此策略确定当正在摄取的传入记录已存在于存储中时采取的操作。此配置的可用值如下: • none:不采取任何特定操作,如果传入记录包含重复项,则允许 Hudi 表中存在重复项。...如果用户不覆盖此配置,大约每 5 个增量提交(hoodie.compact.inline.max.delta.commits的默认值)会触发 MOR 表的压缩。...记录级索引专门设计用于有效处理此类大规模数据的查找,而查找时间不会随着表大小的增长而线性增加。...查询端改进 Athena 的元数据表支持 用户现在可以与 Athena 无缝地利用 Hudi 的元数据表。...用于增量读取的表值函数 hudi_table_changes Hudi 已经提供了使用增量查询类型获取自给定提交时间戳以来更改的记录流的功能。

    1.8K30

    下一个风口-基于数据湖架构下的数据治理

    而Amazon Athena是一种交互式查询服务,让您能够轻松使用标准 SQL 直接分析Amazon S3中的数据。...Amazon Athena 是一种交互式查询服务,让您能够轻松使用标准SQL分析Amazon S3中的数据。只需指向存储在 Amazon S3中的数据,定义架构并使用标准SQL开始查询。...同时在中国上线的还有Amazon Athena,它是一种交互式查询服务,让客户可以使用标准SQL语言、轻松分析Amazon S3中的数据。...由于Athena是一种无服务器服务,因此客户不需要管理基础设施,而且只为他们运行的查询付费。Athena可以自动扩展,并行执行查询,所以即便是大型数据集和复杂的查询,也能很快获得查询结果。...使用Athena分析Amazon S3中的数据就像编写SQL查询一样简单。Athena使用完整支持标准SQL的Presto,可以处理各种标准数据格式,包括CSV、JSON、ORC和Parquet。

    2.3K50

    数据湖学习文档

    接下来是查询层,如Athena或BigQuery,它允许您通过一个简单的SQL接口来探索数据湖中的数据。...但最简单的是编写SQL。这就是雅典娜发挥作用的地方。 查询层:雅典娜 一旦您将数据放入S3,开始研究您所收集的数据的最佳方法就是通过Athena。...Athena是一个由AWS管理的查询引擎,它允许您使用SQL查询S3中的任何数据,并且可以处理大多数结构化数据的常见文件格式,如Parquet、JSON、CSV等。...Hive是一个数据仓库系统,它有一个用于处理大量数据的SQL接口,从2010年开始出现。...这为您提供了一个非常便宜、可靠的存储所有数据的地方。 从S3中,很容易使用Athena查询数据。Athena非常适合进行探索性分析,它有一个简单的UI,允许您针对S3中的任何数据编写SQL查询。

    91820

    【微服务架构】让我们谈谈“拥有”他们的数据的微服务

    将您的数据保存在 S3 中并让消费者使用 Athena/Presto/BigQuery 在其上运行查询怎么样?在这个用例中封装数据发生了什么?...内部数据是其位置和架构可以更改而不事先通知的数据。它完全在服务和拥有团队内部,任何消费者都不应该依赖它。...Amazon Athena 就是一个很好的例子,因为它通过多台服务器并行运行您的查询,因此您的数据消费者可以利用 Athena 的强大功能进行快速的大数据查询。有什么选择?...您会在自己的服务中构建类似的功能并通过 Web API 公开它们吗?您将如何通过 Web API 公开丰富的 SQL 语言?GraphQL 能否涵盖 SQL 提供的所有选项?...API 是否会是您将在内部传递给 Athena 并将结果分页给消费者的通用字符串? 相同的概念可以应用于 Couchbase、DynamoDB、Aurora 或任何其他数据存储。

    55930

    女朋友问小灰:什么是数据仓库?什么是数据湖?什么是智能湖仓?

    数据仓库当中存储的数据,同样是结构化数据。 数据库用于业务处理,数据仓库用于数据分析,一时间大家都使用得十分愉快。...其中包括亚马逊云科技的几个重要法宝: Amazon Athena 交互式查询服务,支持使用标准SQL语句在S3上分析数据。...Amazon Athena可以帮助我们使用熟知的标准SQL语句来创建数据库、创建表、查询数据、并让数据结果可视化。 再比如,互联网程序员每天都要面对海量的日志,如何更高效地存储和查询日志呢?...您可以使用Amazon Glue Elastic Views,通过 PartiQL语言(一种兼容 SQL 的开源查询语言)编写查询来创建具体化视图。...此外,刚才我们提到的Amazon Redshift与Athena还支持联合查询,可以跨多种存储方案在运营数据库、数据仓库以及数据湖间对数据执行查询,无需任何数据移动即可提供跨数据湖洞见,消除了设置并维护复杂的提取

    2.2K30

    关于数据湖架构、战略和分析的8大错误认知

    本文的目的是构建数据湖,并提供适应企业数据策略的背景信息。咨询公司和提供商提出的意见相互矛盾,因此,这些信息历来一直不透明,令人困惑。...以Amazon的Athena为例,Athena不是一个数据仓库软件,而是一个基于开源FaceBook Presto开发的按需查询引擎,它将按需提供“计算”资源查询数据作为一项服务来提供。...可以通过Athena这类的查询引擎或者像Redshift、BigQuery、Snowflake等“仓库”来查询数据湖数据内容,这些服务提供计算资源,而不是提供一个数据湖。...但是,在数仓“导入所有数据”模型中,数仓包含所有的数据内容,其中会包括暂时的和易失的原始数据。...▲数仓或SQL查询引擎的典型工作流 正如之前所说的,这和数仓旨在反映既定事务数据的基本前提相矛盾。一个更好的历史数据比较不是在数仓和数据湖之间进行,而是在ODS和数据湖之间进行。

    1.8K20

    SQL 的云端大数据开发极速入门

    因此,在上一篇文章中,我们围绕着这个重要需求场景如何在Azure进行实现详细地展开了我们的探索。首先作为参照,我们在AWS环境中利用S3和Athena成功地对一个csv文件进行了SQL查询。...我们就选择它作为查询引擎。 首先我们准备一下实验所需的数据,我们同样沿用上篇文章中的包含信用卡借贷数据的csv文件,把它放置到存储账户的Blob中。...与Athena类似,PolyBase同样是通过定义外部表的方式来对云存储中的数据和格式进行映射的。我们来看一下具体的步骤。...LOCATION中使用的wasb协议也印证了这一点,因为wasb本来就用于让Azure Blob存储挂载和融入到Hadoop体系中。...如果再考虑到SQL Server体系中ADO.NET/JDBC/ODBC等方便而成熟的访问接口,PolyBase还不失为一个生产应用集成云上大数据的优美方式,既可用于数据搬运,也可直查数据湖。

    1.3K20

    数据湖火了,那数据仓库怎么办?

    而 AWS 还提供了交互式查询方式可以直接查询 S3 中的数据,Amazon Athena 便是一种交互式查询服务。...它可以使用标准 SQL 分析 Amazon S3 中的数据,Athena 简单易用,只需指向开发者存储在 S3 中的数据,定义架构即可开始查询,它无需执行复杂的 ETL 作业来为数据分析做准备,开发者可以轻松实现分析大规模数据集...如何解决元数据格式多样的问题? 由于数据湖可以按任何格式存储,因此无需将其转换为预先定义的数据结构,使用数据湖的主要挑战之一便是查找数据并了解数据结构和格式。...Amazon Redshift Spectrum 是 Amazon Redshift 的一项功能, (提示:避免到 console 中搜索 spectrum)AWS 选择开发者熟悉的 SQL 语言,也旨在帮助更多开发者轻松实现查询数据...总结来看,选用 AWS Lake House 可帮助开发者实现以下目标: 高效、低成本的数据存储 独立可扩展的计算能力,能够进行大规模并行处理 标准 SQL 转换 并发扩展灵活地执行 SQL 查询 可见

    1.9K10

    【数据库设计和SQL基础语法】--连接与联接--内连接和外连接的概念

    基本概念包括: 连接的目的: 连接的主要目的是通过在两个或多个表之间共享列的值来建立关系,使得可以在一个查询中检索出相关联的数据。 连接条件: 连接条件定义了两个表之间关系的规则。...内连接用于检索满足连接条件的行,返回两个表之间的交集。这种连接类型是 SQL 查询中最常用的一种,用于从关联表中获取相互关联的数据。...执行速度相对较快: 内连接通常执行速度相对较快,因为它只涉及匹配的行,不需要考虑未匹配的行。 避免 NULL 值问题: 由于内连接只返回匹配的行,不涉及未匹配的行,因此不会引入 NULL 值问题。...示例: 左外连接可以用于查找所有未在订单表中出现的顾客信息,或者右外连接用于查找所有没有关联到顾客的订单信息。...可能引发 NULL 值问题: 外连接的结果集中可能包含 NULL 值,特别是那些未在连接的表中找到匹配项的列。处理 NULL 值可能增加在应用程序中的复杂性。

    82610

    Kerberos原理--经典对话

    Athena: 我以第一项限制开始:你只需要输入你的口令一次。我创造了一个新的网络服务来解决这个问题。它叫做“票据授权”服务,这个服务把Charon的票给用户。使用它必须要有票:票据授权的票。...Euripides: 每次我想要另一种网络服务的时候,我都要去取一张“票据授权”票吗? Athena: 不。记住,上次我们已经同意票是能被重用的。一旦你要用到票据授权票,直接用就可以了。...Athena: Charon用用户名去查找你的口令。然后Charon就会组一个包含票据授权票的包。在送给你之前,Charon用你的口令去把这个包加密。你的工作站收到了包。你输入你的口令。...Athena: 我想我们遇上了一个大问题了。(她叹了口气) 停了一下。 Euripides: 我想这意味着你今晚要忙了。再来点咖啡? Athena: 为什么不。...Athena: 不。你必须同时拥有验证器和票。没有票,验证器是没有用的。解开验证器必须要有口令,服务必须解开票才会有口令。

    2K30

    关于数据湖架构、战略和分析的8大错误认知(附链接)

    以Amazon的Athena为例,Athena不是一个数据仓库软件,而是一个基于开源FaceBook Presto开发的按需查询引擎,它将按需提供“计算”资源查询数据作为一项服务来提供。...Amazon的Redshift Spectrum和Athena一样可以查询数据湖中的数据,利用的是从一个Redshift集群中分离出来的计算资源。...可以通过Athena这类的查询引擎或者像Redshift、 BigQuery、Snowflake等“仓库”来查询数据湖数据内容,这些服务提供计算资源,而不是提供一个数据湖。...但是,在数仓“导入所有数据”模型中,数仓包含所有的数据内容,其中会包括暂时的和易失的原始数据。...数仓或SQL查询引擎的典型工作流 正如之前所说的,这和数仓旨在反映既定事务数据的基本前提相矛盾。一个更好的历史数据比较不是在数仓和数据湖之间进行,而是在ODS和数据湖之间进行。

    1.3K20

    Flink与Spark读写parquet文件全解析

    Parquet介绍 Parquet 是一种开源文件格式,用于处理扁平列式存储数据格式,可供 Hadoop 生态系统中的任何项目使用。 Parquet 可以很好地处理大量复杂数据。...这种方法最适合那些需要从大表中读取某些列的查询。 Parquet 只需读取所需的列,因此大大减少了 IO。...由于每一列的数据类型非常相似,每一列的压缩很简单(这使得查询更快)。可以使用几种可用的编解码器之一来压缩数据;因此,可以对不同的数据文件进行不同的压缩。...Apache Parquet 最适用于交互式和无服务器技术,如 AWS Athena、Amazon Redshift Spectrum、Google BigQuery 和 Google Dataproc...即使 CSV 文件是数据处理管道的默认格式,它也有一些缺点: Amazon Athena 和 Spectrum 将根据每次查询扫描的数据量收费。

    6.1K74

    Apache Hudi 0.15.0 版本发布

    具体说来 • hudi-io 添加了用于 I/O 相关功能的模块,Hudi 原生 HFile 读取器实现位于此新模块中; • hudi-common 模块包含 Apache Hudi 技术规范的核心实现...如果之前使用 hudi-common module 作为依赖项,而 Hadoop 文件系统 API 和实现则现在应包含所有三个模块 hudi-io 、 hudi-common 和 hudi-hadoop-common...Hudi-Native HFile 读取器 Hudi 使用 HFile 格式作为基本文件格式,用于在元数据表 (MDT) 中存储各种元数据,例如文件列表、列统计信息和布隆过滤器,因为 HFile 格式针对范围扫描和点查找进行了优化...Row 时出现的错误,或者记录与提供的 schema 不兼容。...为 Athena 使用 S3 Scheme 最近的 Athena 版本在分区位置有 s3a 方案时静默删除 Hudi 数据。使用分区 s3 方案重新创建表可解决此问题。

    53410

    MYSQL之索引原理与慢查询优化

    如上图,是一颗 b+ 树,关于 b+ 树的定义可以参见 B+ 树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(浅蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针...辅助索引:(也称非聚集索引)是指叶节点不包含行的全部数据,叶节点除了包含键值外,还包含一个书签连接,通过该书签再去找相应的行数据。下图显示了InnoDB存储引擎辅助索引和聚集索引的关系: ?...连表时注意条件类型需一致 10.索引散列值不适合建索引,例:性别不适合 二、查询与慢日志 1、查询计划  explain + 查询SQL - 用于显示SQL执行信息参数,根据参考信息可以进行SQL优化...慢日志查询 将mysql服务器中影响数据库性能的相关SQL语句记录到日志文件,通过对这些特殊的SQL语句分析,改进以达到提高数据库性能的目的。...慢日志查询参数: long_query_time : 设定慢查询的阀值,超出设定值的SQL即被记录到慢查询日志,缺省值为10s slow_query_log : 指定是否开启慢查询日志

    1.2K130

    MySQL 之 索引原理与慢查询优化

    如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,...而这个例子中聚集索引为书的类别。  辅助索引:(也称非聚集索引)是指叶节点不包含行的全部数据,叶节点除了包含键值之外,还包含一个书签连接,通过该书签再去找相应的行数据。...连表时注意条件类型需一致 10.索引散列值不适合建索引,例:性别不适合 9.查询计划  explain + 查询SQL - 用于显示SQL执行信息参数,根据参考信息可以进行SQL优化...慢查询日志    将mysql服务器中影响数据库性能的相关SQL语句记录到日志文件,通过对这些特殊的SQL语句分析,改进以达到提高数据库性能的目的。...慢查询日志参数: long_query_time : 设定慢查询的阀值,超出设定值的SQL即被记录到慢查询日志,缺省值为10s slow_query_log : 指定是否开启慢查询日志

    1.3K70
    领券