首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用于语义分割的全卷积神经网络

全卷积神经网络(Fully Convolutional Neural Network,FCN)是一种用于语义分割的深度学习模型。与传统的卷积神经网络(Convolutional Neural Network,CNN)不同,FCN通过将全连接层替换为卷积层,使得输入可以是任意大小的图像,输出为相同大小的特征图。

FCN的主要优势在于:

  1. 语义分割:FCN可以对图像中的每个像素进行分类,将图像分割成不同的语义区域,实现像素级别的语义分割。
  2. 空间信息保留:由于全卷积网络中的卷积层没有全连接层的限制,可以保留输入图像的空间信息,使得分割结果更加准确。
  3. 多尺度处理:FCN通过使用跳跃连接(skip connections)和上采样(upsampling)技术,可以在不同尺度上进行特征提取和融合,提高了对不同大小目标的分割效果。

FCN在许多领域都有广泛的应用场景,包括但不限于:

  1. 图像分割:FCN可以用于图像分割任务,如医学图像分割、自动驾驶中的道路分割等。
  2. 目标检测:FCN可以用于目标检测中的像素级别标注,提供更精细的目标边界信息。
  3. 人体姿态估计:FCN可以用于对人体姿态进行分割和估计,如人体关键点检测、人体姿态跟踪等。

腾讯云提供了一系列与语义分割相关的产品和服务,包括:

  1. 腾讯云AI开放平台:提供了丰富的人工智能服务,包括图像分割、目标检测等功能,可用于构建语义分割应用。
  2. 腾讯云图像处理(Image Processing):提供了图像分割、图像识别等功能,可用于实现语义分割任务。
  3. 腾讯云机器学习平台(Tencent Machine Learning Platform,TMLP):提供了深度学习模型训练和部署的服务,可用于训练和部署全卷积神经网络模型。

更多关于腾讯云相关产品和服务的详细介绍,请参考腾讯云官方网站:腾讯云

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割

    译者 | 王柯凝 【 AI 科技大本营导读】目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。 那么什么是计算机视觉呢? 这里给出了几个比较严谨的定义: ✦ “对图像中的客观对象构建明确而有意义的描述”(Ballard&B

    07

    【无监督学习最新研究】简单的「图像旋转」预测,为图像特征学习提供强大监督信号

    【新智元导读】在论文中,研究人员训练卷积神经网络来识别被应用到作为输入的图像上的二维旋转。从定性和定量两方面证明,这个看似简单的任务实际上为语义特征学习提供了非常强大的监督信号。 在过去的几年中,深度卷积神经网络(ConvNets)已经改变了计算机视觉的领域,这是由于它们具有学习高级语义图像特征的无与伦比的能力。然而,为了成功地学习这些特征,它们通常需要大量手动标记的数据,这既昂贵又不可实行。因此,无监督语义特征学习,即在不需要手动注释工作的情况下进行学习,对于现今成功获取大量可用的可视数据至关重要。 在我

    06

    Encoder-Decoder with Atrous SeparableConvolution for Semantic Image Segmentation

    深度神经网络采用空间金字塔池化模块或编解码器结构进行语义分割。前者通过多速率、多有效视场的过滤或池化操作,能够编码多尺度背景信息;后者通过逐步恢复空间信息,能够捕获更清晰的物体边界。在本研究中,我们建议结合这两种方法的优点。具体来说,我们提出的模型DeepLabv3+扩展了DeepLabv3,通过添加一个简单但有效的解码器模块来细化分割结果,特别是沿着对象边界。我们进一步探索了Xception模型,并将深度可分离卷积应用于Atrous空间金字塔池和解码器模块,从而获得更快、更强的编码器-解码器网络。我们在PASCAL VOC 2012和Cityscapes数据集上验证了该模型的有效性,在没有任何后处理的情况下,测试集的性能分别达到了89.0%和82.1%。

    02

    基于深度学习的语义分割技术总览

    用卷积神经网络分类(全卷积网络FCN),与普通CNN网络不通的是,FCN的分类层是卷积层,普通网络为全连接层。方法介绍如下:  最近的语义分割架构一般都用卷积神经网络(CNN)为每个像素分配一个初始类别标签。卷积层可以有效地捕捉图像中的局部特征,并以层级的方式将许多这样的模块嵌套在一起,这样 CNN 就可以试着提取更大的结构了。通过一系列卷积捕捉图像的复杂特征,CNN 可以将一张图的内容编码为紧凑表征。  但为了将单独的像素映射给标签,我们需要将标准 CNN 编码器扩展为编码器-解码器架构。在这个架构中,编码器使用卷积层和池化层将特征图尺寸缩小,使其成为更低维的表征。解码器接收到这一表征,用通过转置卷积执行上采样而「恢复」空间维度,这样每一个转置卷积都能扩展特征图尺寸。在某些情况下,编码器的中间步骤可用于调优解码器。最终,解码器生成一个表示原始图像标签的数组。

    02

    农林业遥感图像分类研究[通俗易懂]

    遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

    02

    那些一键抠图的软件是怎么做到的?这些语义分割方法了解一下

    在深度学习时代到来之前,大量的图像处理技术被用来将图像分割成一些感兴趣的区域(ROI)。下面列出了一些常用的方法。 灰度分割 这是最简单的语义分割形式,它包括将一个区硬编码的规则或某个区域必须满足的特定的标签属性赋予这个区域。可以根据像素的属性(如灰度值)来构建这样的规则。「分裂-合并」算法就是一种用到了灰度分割技术的方法。该算法递归地将图像划分成若干子区域,直到可以为划分出的子区域分配一个标签,然后通过合并将相邻的带有相同标签的子区域融合起来。 该方法存在的问题是,规则必须是硬编码的。此外,仅使用灰度信息来表示复杂的类(比如人)是极其困难的。因此,需要特征提取和优化技术来恰当地学习这些复杂类所需的表征形式。

    04
    领券