用户画像分析的错误姿势 1.限于数据,动不敢动。一提用户画像,很多人脑海里立刻蹦出了性别,年龄,地域,爱好等基础信息字段,然后大呼:我们好像没这个数据,于是放弃分析了。...以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。...像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。...一般来说, 越是偏态度、体验、情感类问题,越倾向于用调研的方法 越是偏行为、消费、互动类问题,越倾向于内部的数据分析 如果想了解竞品,就拉竞品用户调研,或针对竞品网店爬虫 在传统意义上,做市场调研和做数据分析的...不考虑具体问题场景,单纯的问:一般的用户画像怎么做。得到的也是来自算法、调研、数仓、分析各个岗位千奇百怪的回答,自然没有分析思路了
有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。 用户画像分析的错误姿势 1.限于数据,动不敢动。...以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。...像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。...一般来说, 越是偏态度、体验、情感类问题,越倾向于用调研的方法 越是偏行为、消费、互动类问题,越倾向于内部的数据分析 如果想了解竞品,就拉竞品用户调研,或针对竞品网店爬虫 在传统意义上,做市场调研和做数据分析的...不考虑具体问题场景,单纯的问:一般的用户画像怎么做。
有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。 用户画像分析的错误姿势 1.限于数据,动不敢动。...以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。...像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。...一般来说, 越是偏态度、体验、情感类问题,越倾向于用调研的方法 越是偏行为、消费、互动类问题,越倾向于内部的数据分析 如果想了解竞品,就拉竞品用户调研,或针对竞品网店爬虫 在传统意义上,做市场调研和做数据分析的...不考虑具体问题场景,单纯的问:一般的用户画像怎么做。得到的也是来自算法、调研、数仓、分析各个岗位千奇百怪的回答,自然没有分析思路了
我们需要定义用户群体,需要更了解用户,自然而然就会去认知用户,收集用户的相关信息,这些步骤其实就是在逐步构建用户画像。接下来,我将带你通过4个问题一次性弄明白用户画像。 1. 什么是用户画像?...(抖音总体用户初步画像) 产品的用户画像,就是从用户的各种信息(包括人口学特征、使用习惯、兴趣内容等等)提取出标签,用这些标签构建起用户画像。 当然上面解释的只是得到用户画像的最终结果。...以上两组标签,会形成两组完全不同的用户画像。下图展示了电商和广告可能用户画像情形(说明:一款产品可能拥有多个用户画像代表)。 (4)总结 2. 用户画像有什么用?如何使用?...讨论用户画像的作用,我们先了解用户画像理论的源头Alan Cooper怎么说。 Alan Cooper认为有四个核心作用: 1)产生共同语言。 2)让用户形象不再多变且没有定论。...(4)产品营销推广阶段 营销推广本身范畴很大,包含产品的营销策略、市场活动和广告传播等,由于我们接下来继续用广告用户画像的例子,因此后续分析也重点放在广告推广方面。
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。...用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。...主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
INSERT","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像...reduce.addSink(new CarrierAnalySink()); env.execute("portrait carrier"); } } 创建用户画像会员分类标签...()); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征...这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。...创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。...本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。...将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。...图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。...本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。
用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。...用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。...创建用户画像的方法 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统...,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况; 进行效果评估,完善产品运营,提升服务质量,其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务...; 对服务或产品进行私人定制,即个性化的服务某类群体甚至每一位用户; 业务经营分析以及竞争分析,影响企业发展战略。
01 画像简介 用户画像,即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或者产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌...中间的虚线框即为用户画像建模的主要环节,用户画像不是产生数据的源头,而是对基于数据仓库ODS层、DW层、DM层中与用户相关数据的二次建模加工。...图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。...就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。...面向业务方推广应用:用户画像最终的价值产出点是业务方应用画像数据进行用户分析,多渠道触达运营用户,分析ROI,提升用户活跃度或营收。
前段时间做可一些用户画像方面的工作,对用户画像技术有了初步了解。如果你是一个对大数据和用户画像技术完全不了解的小白,希望这篇文章可以提供一点帮助。...在项目开展前,当然要先了解用户画像主要是干什么的,下面是我总结的两篇文章,大家可以先对大数据和用户画像有个基本的认识。...用户画像--《美团机器学习实践》笔记 如果刚接触用户画像,可以先通过以上两篇文章对用户画像挖掘和应用有初步了解。如果你读完以后是一脸懵的话,我知道你很急,但是你先别急。...人生苦短,我用python,所以我选择pyspark。 Spark主要是用Scala语言开发,部分使用Java语言开发,运行在JVM中。同时在外层封装,实现对python,R等语言的开发接口。..."的兴趣度是"0.5"~短期(天)兴趣画像就出来啦~ 以上内容阐述了如何通过最直观简洁的方式来构建用户画像,让大家对用户画像的概念有更深入的理解。
七、 用户画像标签体系的建立 1、什么是标签体系 用户画像是对现实用户做的一个数学模型,在整个数学模型中,核心是怎么描述业务知识体系,而这个业务知识体系就是本体论,本体论很复杂,我们找到一个特别朴素的实现...(3)标签命名&赋值 我们用一张图来说明一下命名和赋值的差别,只要在构建用户标签的过程种,有意识的区别标签命名和赋值足矣,不再赘述。...还有Facebook用的用户兴趣词。 4、用户画像标签层级的建模方法 用户画像的核心是标签的建立,用户画像标签建立的各个阶段使用的模型和算法如下图所示。 原始数据层。...用户画像系统技术架构 (1) 数据处理 a、数据指标的梳理来源于各个系统日常积累的日志记录系统,通过sqoop导入hdfs,也可以用代码来实现,比如spark的jdbc连接传统数据库进行数据的cache...比如说你怎么判断一个人是不是对女装感兴趣,假设我们有一个类目就是女装,那很好办,如果你购买都是女装,那会认为你这个人对女装比较感兴趣。
很多同学很郁闷:天天喊用户画像,可做了几千个用户标签,可都躺在数据库里吃灰,业务不咋用,咋整。今天拿个具体例子讲解一下,看用户画像这玩意到底咋发挥作用。...如果抛开现有流程再推方案一,肯定会收到一堆疑问: “待消费用户”到底成功率有多高?预测准不准? 门店谁去做?什么时候做?拿什么产品做?说什么话做? CRM、ERP、OMS、CC一堆系统要怎么配合?...而题目的场景是项目已启动,这时候用方案二,更容易借力打力,提高用户画像系统使用率,把标签推广出去。没有审时度势*1,找好推广用户标签的机会,是用户画像系统吃灰的重要原因。...还可以用什么策略,这时候进一步推动找更复杂的用户标签,业务方也愿意听了。这又是个审时度势*3的事。 如果我们成功的把握机会,推动到业务方思考:还有哪些标签能识别用户需求!...从而让业务方更好的积累经验,更依赖用户画像系统,而不是自己的经验判断(如下图): ? 注意:没有检验过的用户标签是没有说服力的。
分享一个B2B用户画像的做法。网上流传的资料大多是B2C相关的,导致在B2B企业的同学很困惑:”老师,说是RFM模型,可我们的客户都是n久没有一张单,一张订单几百万,怎么个RFM法呢?...所以,B2B企业会更需要做用户画像:一则为建立清晰的用户联系,把客户控制权从一线销售手里夺回来。二则,为了清楚掌握客户特征,识别用户需求,及时跟进服务。...与B2C用户画像一样,B2B用户画像也可以分为用户名称,基本特征,消费行为,互动行为等维度,但要考察的内容完全不同(如下图)。 ?...对B2B用户画像而言,列出需求字段只是万里长征第一步,真正的挑战从这里开始。...所以关注用户的经营效果,制定我们的经营方略,才是设计用户分类的出发点 基本的用户画像概念就如上做述。
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像?...这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: ?...二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?...所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。...百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%,订单转化率提升34%。
因此为了满足在激烈竞争中的优势,提前预测出用户是否会流失,采取保留措施成为一大挑战。 本文和你一起探索电信流失客户的画像,后续文章会对电信用户进行流失预测。...一、数据读取与分析 首先介绍一下数据集,它总共包含了7043个用户的信息。...说明如果想增加用户留存,可以考虑给老年人一些优惠活动或采取一些激励措施来减少老用户的流失。...cutOffPoints)}) else: d1 = pd.DataFrame({'x':x,'y':y,'bucket':pd.qcut(x,n,duplicates='drop')}) #用pd.cut...从bad_rate一列可以看出,总费用越低,客户流失率越高,可能和客户是新用户相关。 三、流失客户画像分析-总结 总结的流失客户画像如下: 至此,电信流失客户画像已讲解完毕。
在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢?...用同样方法可以获得参与现场内测20位玩家独立的用户画像,以及优化方向,总结如下: (6)日记法测试剩余核心用户: 在筛选用户及问卷调查阶段,我们确定了100名待选用户。...用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。...同时需要具体分析:用户分类对游戏功能设计/优化/推广等方面的帮助,以及还需要补充哪些信息。 (2)数据聚类: 当用户数量过多时,用KJ法归类会力不从心。...案例来自Fantham针对Divvy Bike共享单车的用研设计方案。
image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢?...image.png 用同样方法可以获得参与现场内测20位玩家独立的用户画像,以及优化方向,总结如下: image.png (6)日记法测试剩余核心用户: 在筛选用户及问卷调查阶段,我们确定了100...用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。...同时需要具体分析:用户分类对游戏功能设计/优化/推广等方面的帮助,以及还需要补充哪些信息。 (2)数据聚类: 当用户数量过多时,用KJ法归类会力不从心。...提炼画像 image.png 先学习一下合格的用户画像是怎样的?案例来自Fantham针对Divvy Bike共享单车的用研设计方案。
0x00 前言 视频号分享中【什么是用户画像】的文案,文字版分享给大家~内容虽然短,但是能锻炼在1分钟讲一个概念的能力,如果以后有朋友问你用户画像是什么,你可以用下面1分钟左右的文稿告诉他。...今天要和大家分享的话题是:用户画像。 0x01 画像 那么,什么是用户画像呢?我来举个例子说明: 假设你有一位朋友:他是一名35岁左右的男性,周六日喜欢宅在家里,而且每天点外卖。...那把上面这些标签和在一起,就形成了你朋友的用户画像,看一下,熟悉吗? 0x02 应用 那么有了这些画像之后,有什么用呢?
在数据的基建和应用层面,除了重视数据分析外,也越来越重视数据资产在更多业务场景中的应用,标签画像的建设和应用就是其中一类很常见的需求和期望。...从对业务的价值来说,标签和画像是类似中间层的系统模块,具体来说,数据资产本质上是一些采集、采购所获得的数据源,但企业希望在数据源的基础上,实现资产变现,而且不断扩大资产价值。...很多企业都意识到,这个中间层就是标签画像。...下面主要介绍了企业做标签画像的目的,重点阐述标签和画像的应用场景及应用流程,构建标签和画像体系的实操方法论,最后给出了行业案例。
用户画像一词具有很重的场景因素,不同企业对于用户画像有着不同对理解和需求。举个例子,金融行业和汽车行业对于用户画像需求的信息完全不一样,信息纬度也不同,对画像结果要求也不同。...从商业角度出发的用户画像对企业具有很大的价值,用户画像目的有两个。 一个是业务场景出发,寻找目标客户。另外一个就是,参考用户画像的信息,为用户设计产品或开展营销活动。...三、用户画像工作坚持的原则 市场上用户画像的方法很多,许多企业也提供用户画像服务,将用户画像提升到很有逼格一件事。...用户画像和用户分析时,需要考虑强相关信息,不要考虑弱相关信息,这是用户画像的一个原则。...让用户画像离商业应用更加近一些,体现用户画像的商业价值。
领取专属 10元无门槛券
手把手带您无忧上云