大家好,我是小瑄 在电商项目中经常需要对用户购买行为进行分析,比如需要求用户连续购买天数,用户这次购买与上次购买间隔天数。...这里是基于hive on spark来对数据进行分析的,所以使用sql进行讲解 使用sql求用户连续购买天数以及与上次购买间隔天数,按照下面步骤进行处理 对数据进行聚合/去重 对用户进行分组排序 日期与序号进行减法运算...对数据进行聚合/去重 第一步是对数据按天进行初步聚合(因为一个用户可能在某天有多次购买行为) 因为只是作为演示,所以只用单个用户进行 select member_id,order_date from...TABLE_NAME where member_id='1690' group by member_id,order_date 结果如下: 对用户进行分组排序 我们把上一个结果表称为: TABLE...date_sub(order_date,rank_num) as origin_date from TABLE_2 结果如下: 获取开始连续的日期以及连续天数 其实从上面的结果表中就已经能够统计出那些用户的连续天数满足需求了
2019.5-2020.4期间的复购率 【解题思路】 1.明确业务指标 要分析的是“在2019.5-2020.4期间的复购率”,复购率是业务分析中经常用到的指标。...复购率 =一定时间内购买次数大于1次的人数/所有购买的用户数 举个例子,3月份购买产品的100个人中有30个人购买了2次。...3月份的总的复购人数为30人,复购率=一定时间内购买次数大于1次的人数(30)/所有购买的用户数(100)=30% 2.如何判断是否是复购呢?...不同的行业有不同的标准,一般是指发货了再购买的才算复购,同一天购买的不算是复购。 也就是日期不同的,再次购买的用户算是复购。...count)计数 count(distinct(a.顾客ID)) 这样,复购率 =一定时间内购买次数大于1次的人数/所有购买的用户数 if(count(distinct (a.顾客ID))>1,1,0)
目录 一、概述 二、数据模型 三、数据格式 四、架构图 五、动态添加ClickHouse列 六、用户关联(IdMapping) 七、批量写入 八、结束(附用户关联源码) 一、概述 埋点采集、用户行为分析...、实时数仓、IdMapping 此文重点讲述埋点的数据模型、数据格式、数据实时采集、加工、存储及用户关联。...关于用户行为分析的概念、意义以及埋点相关的东西此文不作赘述 二、数据模型 业界比较流行的事件、用户模型;即: who: 设备ID、登录ID when: 事件发生时间、上报时间 where: 设备环境、网络环境...六、用户关联(IdMapping) 参考神策数据的用户关联: 选取合适的用户标识对于提高用户行为分析的准确性有非常大的影响,尤其是漏斗、留存、Session 等用户相关的分析功能。...因此,我们在进行任何数据接入之前,都应当先确定如何来标识用户。下面会介绍神策分析用户标识的原理,以及几种典型情况下的用户标识方案。 ?
CDA数据分析师 出品 作者:CDA资深讲师 张藉予 编辑:Mika 随着数据分析的不断应用与发展,用户画像已经广为人知。...其中的核心原理就是对用户进行分群,而用户分群的主要逻辑就是将数据进行标签化。 RFM模型是我们常用来分析客户价值的数据分析模型,使用这个模型分析后配合匹配的营销方法,能够让业绩进行大幅度提升。...所以我们将数据进行了处理之后,计算出来了特价商品占特价商品跟普通商品的比例,这样得出来了用户对于打折商品的用户的偏好程度。 第三个是计算M。...M是用户的消费金额,我们将数据进行加加减减,最后得出来了用户关于特价商品跟普通商品的消费金额。 然后我们将所计算的RFM进行了特征的整合,得出来了每个客户ID下的RFM具体的数值。...如果大家还有数据分析方面相关的疑问,就在评论区留言。
“1个老用户比20个新用户更有价值”是很多运营挂在嘴边的理论。可一到真刀真枪做数据分析的时候,又变成了让人头大的问题:“复购行为咋分析!” 就算计算出复购率指标,除了“要搞高”以外,又能干些什么呢?...01 复购分析的概念 通常,人们会把把新注册用户首次购物行为,称为首购。把首购之后的第二次购买行为,统称为复购。 这样在数据上看,首购只有一次,复购行为可能有很多次。...因此,人们会习惯性的把首购后的复购,称为:二次购买率,用这个指标考核新用户的质量。把二次以后的其他复购行为,归于常规运营范畴(如下图)。 02 三种常规方法 在常规运营中,又有几种常见的做法。...因此,找到用户真正感兴趣的东西,是一个很好的分析线索。好在,在分析用户复购行为的时候,我们手上并不是白纸一张。用户已经至少有了1次消费记录,可以从这里出发,开始探索后续方向。...也导致基础建设滞后,没有相应商品标签、内容标签、用户行为标签的积累,数据分析能做个屁。
明确分析目标及其方向 通过对用户关键行为的埋点获取的日志数据,包含用户、商品、行为、时间等信息,而看似简单的几个维度,通过数据分析手段,便能从不同角度挖掘蕴含的价值。...本次主要通过以下四个方向探索淘宝用户行为: 1.1 用户行为时间模型 PV、UV随时间变化。 留存率模型。 1.2 用户消费行为分析 各周期内消费次数统计。 各行为转化模型。 复购率模型。...1.3 用户价值分析 RFM模型。 各价值类别用户分布、购买力等。 1.4 商品分析 商品和行为关系。 TOP商品分析。...2.2 复购率分析 复购率是自然周期内,购买多次的用户占比 复购率统计口径:有复购行为的用户数 / 有购买行为的用户数 df_buy = df.loc[df.behavior=='buy'] pivot_life...对于点击量高的商品,要重点分析,优化商品的推荐机制,让用户做到点击即想购买。 3、用户价值:通过RFM模型分析得到的不同类型的用户,应该采取不同的激励方案。
关于用户行为分析,很多互联网公司都有相关的需求,虽然业务不同,但是关于用户行为分析的方法和技术实现都是基本相同的。在此分享一下自己的一些心得。 一....有了上面的思路,下面我们来说下实现的相关技术问题,如何落地用户行为分析。 a).首先是获取用户行为数据,目前比较多的方法有两种,一种是埋点,一种是无埋点(即全埋点)。...用户的访问日志都是实时产生的,如何落地到HDFS上呢?第一,埋点数据可以先落到磁盘,然后通过FLUME监听对应的磁盘目录,进行转发到HDFS,推荐使用kafka channel。...对于离线分析,上述步骤,可以获取数据分析,对于个别实时需求,计算时则不需要进行落地HDFS,直接利用Storm,Spark Streaming,Flink等计算引擎消费Flume中转的kafka数据即可...四.总结 本小节知识简单介绍了用户行为分析的大概流程,具体到分析方法还有很多,之后会说下埋点数据的设计和处理过程。
,大R流失严重) 第3步:结合数据分析(例如,分析数据,付费玩家为什么流失?...用商业思维看行为数据 行为数据,即用户行为占有率,例如活跃度,留存率,付费率… 商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性… 例如,两个公会冲突,游戏内打得火热,公会成员拼活跃,比等级...如果不想,就得学会用商业思维看待行为数据;例如,这两个帮会的竞争平台有哪些?论坛?贴吧?哪些人在活跃,哪些人在付费?影响他们的人是谁?他们是否还有可继续发掘价值? 如何平衡这种关系?...很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销! 5....再举个例子,同一时间内,若某用户一次性购买两个宝石,他是算一次性购买?还是重复购买?不要小看此类数据,用户单次购买和分次购买直接决定用户的需求量,同样的数量面前,区间价值很大!
,大R流失严重) 第3步:结合数据分析(例如,分析数据,付费玩家为什么流失?...(以MMO混服为例,区分用户可给包打上渠道标识,简单易懂) 4.用商业思维看行为数据 行为数据,即用户行为占有率,例如活跃度,留存率,付费率… 商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性...如果不想,就得学会用商业思维看待行为数据;例如,这两个帮会的竞争平台有哪些?论坛?贴吧?哪些人在活跃,哪些人在付费?影响他们的人是谁?他们是否还有可继续发掘价值? 如何平衡这种关系?...很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销!...再举个例子,同一时间内,若某用户一次性购买两个宝石,他是算一次性购买?还是重复购买?不要小看此类数据,用户单次购买和分次购买直接决定用户的需求量,同样的数量面前,区间价值很大!
爬虫随机从CSDN博客取得800条用户行为数据,包含用户名、原创博客数、评论数、浏览量,试着从博客数,评论数,浏览量三个方面分析csdn的博主们的形象。...浏览量 浏览量超过2w的有37%,超过10w的有27%,这数字开起来很大,但联想到有30%的用户博客数过50,所以平均下来,一篇博客应该有2000浏览量,这个可以再之后进行爬取数据做分析。 ?...拉取数据实现 存储格式 用户信息包括用户名,点击量,评论数,原创博客数,使用json文件存储。...关注和被关注用户列表用于做递归访问。 ?...注意,并不是所有的用户都有me.csdn.net页面,比如这个https://me.csdn.net/qq_41173121 将保存的json文件通过在线json转excel工具转成excel,进行统计画图分析
其作用大体不离以下几个方面: 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统,...业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。...还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。...用户汽车模型 根据用户对“汽车”话题的关注或购买相关产品的情况来判断用户是否有车、是否准备买车 用户忠诚度模型 通过判断+聚类算法判断用户的忠诚度 身高体型模型 根据用户购买服装鞋帽等用品判断 文艺青年模型...用户画像基本成型 该阶段可以说是二阶段的一个深入,要把用户的基本属性(年龄、性别、地域)、购买能力、行为特征、兴趣爱好、心理特征、社交网络大致地标签化。 为什么说是基本成型?
image.png 问题:请用一句sql语句得出以下查询结果,得到所有用户的商品行为特征,其中用户行为分类为4种:已购买、购买未收藏、收藏未购买、收藏且购买。...image.png 1.如何得到用户行为特征? 因为要通过用户id和商品id来判断用户在订单表和收藏表的情况,所以用用户id、商品id联结两表。...这种情况,我们使用用户收藏商品表(表b)左联结用户订单表(表a)可以判断出,也就是保留左表用户收藏商品表(表b)里的全部数据。 2.如何判断用户行为特征?...as b 16 left join 用户订单表 as a 17 on b.用户id=a.用户id and b.商品id=a.商品id); 查询结果: image.png 【本题考点】 1.用多维度拆解分析方法...image.png 推荐:如何从零学会SQL? image.png
淘宝APP的功能日益复杂,但都离不开最基本的收藏、购物车和购买功能,本文利用sql对淘宝用户行为数据进行分析,通过用户行为分析业务问题。 一....提出问题 本次分析的目的是想通过对淘宝用户行为数据分析,为以下问题提供解释和改进建议: 1.分析用户使用APP过程中的常见电商分析指标,确定各个环节的流失率,找到需要改进的环节 2.研究用户在不同时间尺度下的行为规律...构建模型 1.分析用户行为的漏斗模型 利用AARRR模型分析用户行为,此处数据主要涉及用户刺激和购买转化的环节,通过用户从浏览到最终购买整个过程的流失情况,包括浏览、收藏、加入购物车和购买环节,得到一个月内的各项指标如下...2.不同时间尺度下用户行为模式分析 分别以月、周和日为单位分析用户购买行为,找出用户活跃规律。...1.通过AARRR模型分析用户使用的各个环节 1)获取用户 由于数据中没有给出每个用户第一次的登陆的时间,我们暂且把浏览行为视为用户的获取。 2)激活用户 用户行为包括点击、放进购物车、收藏以及购买。
需求九:GMV(Gross Merchandise Volume)一段时间内的成交总额 需求十:转化率=新增用户/日活用户 需求十一:用户行为漏斗分析 需求十二:品牌复购率 需求十三:ADS层品牌复购率报表分析...需求十四:求每个等级的用户对应的复购率前十的商品排行 需求一:用户活跃主题 DWS层--(用户行为宽表层) 目标:统计当日、当周、当月活动的每个设备明细 1 每日活跃设备明细 dwd_start_log...dws_user_retention_day) 用户1天留存的分析:===>> 留存用户=前一天新增 join 今天活跃 用户留存率=留存用户/前一天新增 创建表:dws_user_retention_day...` bigint comment '支付人数', `order2payment_convert_radio` decimal(10, 2) comment '下单到支付的转化率' )COMMENT '用户行为漏斗分析...1)每个等级,每种商品,买一次的用户数,买两次的用户数=》得出复购率 2)利用开窗函数,取每个等级的前十 3)形成脚本 用户购买明细宽表 dws_sale_detail_daycount ① t1--
用户行为路径分析是互联网行业特有的一类数据分析方法,它主要根据每位用户在App或网站中的点击行为日志,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或点击模式,进而实现一些特定的业务用途...漏斗模型通常是对用户在网站或App中一系列关键节点的转化率的描述,这些关键节点往往是我们人为指定的。例如我们可以看到某购物App应用的购买行为在诸葛io中的漏斗转化情况。...路径分析与漏斗模型存在不同之处,它通常是对每一个用户的每一个行为路径进行跟踪与记录,在此基础上分析挖掘用户路径行为特点,涉及到每一步的来源与去向、每一步的转化率。...将超市的每个客户一次购买的所有商品看成一个购物篮,运用关联规则算法分析这些存储在数据库中的购买行为数据,即购物篮分析,发现10%的顾客同事购买了尿布与啤酒,且在所有购买了尿布的顾客中,70%的人同时购买了啤酒...今后有机会可能会以案例方式分享如何做用户路径分析,展示分析过程中的步骤与思路,希望能和大家多多交流。
客户端应用程序收到令牌后,将对其进行验证以确保其真实性,然后仅在每个后续请求中使用它来对用户进行身份验证,以便用户不必再发送凭据。...识别效果通过对多种身份认证机制和多个账号登陆场景的覆盖,实现对账号的精准识别,以账号维度实时监测API安全风险、数据风险和用户行为风险。...三、API用户行为监测下面将介绍部分常见的API用户风险行为场景和行为监测方案。...用户异常行为告警按照预定义的时间窗口,以账号维度实时监控API相关行为风险,若满足相关可配置预设条件,对数据进行实时聚合,发出相关风险告警。...告警示例:在过去的xxx时间范围内,账号 Y 的敏感操作行为为Z次,超过预设阈值,可能存在xxx相关行为风险。
03 Censydiam用户动机分析模型 在阐述Censydiam用户动机分析模型前, 本文希望通过对比两个从中国发展起来的奢侈品品牌,NE·TIGER和上下,来帮助大家认识到理解用户动机的重要性。...Censydiam用户动机分析模型是由思纬市场研究公司的Censydiam研究机构提出来的,主要用于研究用户行为、态度或者目标背后的动机。...社会层面,用户经常需要在寻求群体归属和保持自我独立之间进行权衡,即群体是个体归属感和安全感的根本来源,同时,个体又需要在社会交往中充分展现自身的个性和能力,以及在与他人比较下获得自尊感和成就感,这个维度可以很好地帮助产品经理理解自己的产品将如何帮助用户塑造自身与周围社会之间的关系...除这四种基本动机外,Censydiam 研究所还分析和总结了这四个象限之间人们表现出来的行为动机,分别是: 活力/探索,该象限的用户对花花世界充满了好奇,他们拥抱一切新奇的东西,渴望新的情感,以及挑战自我...由此,得到用户的“八动机” ? 图3 Censydiam消费动机分析模型 04 三者之间的关系 (1)需求是动机的根源,动机是造成行为的原因,而行为则让需求得以满足。
领取专属 10元无门槛券
手把手带您无忧上云