腾讯云升级发布新一代云数仓产品 CDW ClickHouse,万亿规模数据分析毫秒级响应 6月28日,腾讯云重磅发布了全新升级的全托管数仓产品CDW-ClickHouse,该版本首次填补了原生ClickHouse后续扩容的技术空白,相较Hadoop生态体系有高达10倍乃至100倍的性能提升,支持万亿规模数据毫秒级响应,可为用户提供在海量数据实时分析场景下的极速体验。 腾讯云 CDW ClickHouse 升级发布 现阶段,千行百业都在积极利用大数据能力进行数字化升级,这也对大数据技术提出了更高要求。但目
熟练使用Linux,熟练安装Linux上的软件,了解熟悉负载均衡、高可靠等集群相关概念,搭建互联网高并发、高可靠的服务架构;
为了展现开发者在Azure的帮助下能轻松迅速地打造智能应用,我们在Azure上用新发布的人脸识别APIs为2015年微软开发者大会的第二天展示搭建了How-Old.net。借助人脸识别API这个网站可以分析用户上传的照片中人物的性别和年龄。这个API的人脸定位功能及性别识别功能大致准确,然而年龄预测结果并不是非常准确,但How-Old.net依旧能博得用户一笑,制造诸多欢乐。当然,同大部分网站一样,我们不会保留用户上传的照片,也不会分享这些照片,我们只会分析照片里人物的年龄和性别。 网站建成后,我们给数百名
2019年6月爱奇艺会员规模突破1亿,爱奇艺的会员服务业务随之迅速增长,同时也带来了机器集群规模的增加,原有的监控体系也暴露出一些问题。数据监控体系是业务维持稳定服务的基石,会员日志监控体系形成闭环,从网络、应用、异常、页面加载多维度监控,极大提高了系统的成功率、稳定性,对会员视频播放、营销、下单等核心功能增强异常感知。
本项目基于大型物流公司研发的智慧物流大数据平台,该物流公司是国内综合性快递、物流服务商,并在全国各地都有覆盖的网点。经过多年的积累、经营以及布局,拥有大规模的客户群,日订单达上千万,如此规模的业务数据量,传统的数据处理技术已经不能满足企业的经营分析需求。该公司需要基于大数据技术构建数据中心,从而挖掘出隐藏在数据背后的信息价值,为企业提供有益的帮助,带来更大的利润和商机
智能视频分析烟火识别系统应用广泛,对烟火和火苗以及烟雾开展即时分析和警报。与此同时,将报警信息视频截图和警报视频储存在数据库系统中,立即向有关管理者消息推送报警信息,查看报警记录、视频截图和违规视频。智能视频分析烟火识别系统为例子,根据智能视频分析和人工智能算法,智能视频分析烟火识别系统能够识别监控区域里的浓烟和火烟,即时分析警报,繁杂情景识别率能到80%。利用现场的监控摄像头,不依赖别的传感器机器设备,能够立即准确地识别视频监控区域界面的烟尘和火苗。
近年来,随着数据规模越来越大,以及由此衍生出数据实时化的诉求激增,产生了一系列大数据相关的业务场景,场景复杂性高以及业务多维度是明显的两个特点,因此出现许多了实时数仓架构来满足业务需求。
电商卖货是很多产品的盈利方式之一,好的电商卖货环境不仅可以提升产品商业价值,而且可以吸引更多的商家和用户使用产品功能。本节会介绍电商卖货常见的两种应用场景:优惠券发放和直播卖货,画像平台可以在其中起到关键的辅助作用。
在上一篇《通过rsyslog搭建集中日志服务器》,我们分享了如何通过rsyslog搭建集中日志服务器,收集系统日志,在本篇,我们会利用这些系统日志进行安全分析。
2021腾讯数字生态大会上,腾讯公司副总裁、云与智慧产业事业群COO兼腾讯云总裁邱跃鹏表示:
QQ音乐是腾讯音乐旗下一款领先的音乐流媒体产品,平台打造了“听、看、玩”的立体泛音乐娱乐生态圈,为累计注册数在8亿以上的用户提供多元化音乐生活体验,畅享平台上超过3000万首歌曲的海量曲库。优质服务的背后,是每天万亿级新增音乐内容和行为数据,PB数据量级的数据计算服务。
本文将以三个不同层次的实战项目为例,展示如何利用GPT智能助手在实际项目中应用Elasticsearch。
PHP全球开发者大会是DevLink每年一度的,特别针对PHP开发者的专题活动。每次活动均会请到该领域内的资深开发者、技术专家来分享具体、有针对性、具操作性的内容。每次观众规模约700人,会议时间在2天左右。
导·读 近日,“2016易观A10大数据应用峰会”主论坛“大数据基础框架设计-实时分析技术平台洞察与实践”上,易观CTO郭炜发表了“企业大数据的实时分析之路”的主题演讲,从技术角度给大家讲述如何用实时
“2016易观A10大数据应用峰会”主论坛“大数据基础框架设计-实时分析技术平台洞察与实践”上,易观CTO郭炜发表了“企业大数据的实时分析之路”的主题演讲,从技术角度给大家讲述如何用实时分析帮助企业进行数据运营。 各位嘉宾,各位领导,各位技术的小伙伴们,早上好! 非常荣幸今天站在这里和大家分享一下我们易观对于实时分析技术的一些理解。其实昨天于老师也曾经讲过,我们的实时分析会助力我们的用户资产增长,究竟什么是实时分析,实时分析究竟怎么样帮助企业能够做到他的用户资产增长。今天上午主要有几个技术大咖,后面我相信王
原文链接:https://yq.aliyun.com/articles/717779
Linkis是一款优秀的计算中间件,他对应用层屏蔽了复杂的底层计算引擎和存储方案,让大数据变得更加简单易用,同时也让运维变得更加方便。我们的平台很早就部署了WDS全家桶给业务用户和数据分析用户使用。近段时间,我们也调研和实现了hudi作为我们数据湖落地的方案,他帮助我们解决了在hdfs上进行实时upsert的问题,让我们能够完成诸如实时ETL,实时对账等项目。hudi作为一个数据湖的实现,我觉得他也是一种数据存储方案,所以我也希望它能够由Linkis来进行管理,这样我们的平台就可以统一起来对外提供能力。因此我这边做了一个Linkis和Hudi的结合和使用的分享。
本内容由数新网络投递并参与“数据猿年度金猿策划活动——2022大数据产业国产化优秀代表厂商”评选。
【前言】作为中国的 “Fivetran/Airbyte”, Tapdata Cloud 自去年发布云版公测以来,吸引了近万名用户的注册使用。应社区用户上生产系统的要求,Tapdata Cloud 3.0 将正式推出商业版服务,提供对生产系统的 SLA 支撑。Tapdata 目前专注在实时数据同步和集成领域,核心场景包括以下几大类: √ 实时数据库同步,如 Oracle → Oracle, Oracle → MySQL, MySQL → MySQL 等 √ 数据入湖入仓,或者为现代数据平台供数,如: △ 常规 ETL 任务(建宽表、数据清洗、脱敏等) △ 为 Kafka/MQ/Bitsflow 供数或下推
实时数据仓库,简称实时数仓,是一种用于集成、存储和分析大规模结构化数据与非结构化数据的数据管理系统,强调数据的易用性、可分析性和可管理性。它主要面向实时数据流,能够实时地接收、处理和存储数据,并提供实时的数据分析结果。
Cdn服务器在网络上承担着为用户网站访问加速的作用,并且加速的应用也非常的广泛,因此目前这种加速服务器在互联网中有着非常重要的价值,因此通常cdn服务器都需要进行日志,那么CDN日志实时分析的作用是什么?日志分析的好处是什么?
有离线业务、也有实时业务(Lambda 架构) 基于Docker搭建异构数据源,还原企业真实应用场景 以企业主流的Spark生态圈为核心技术(SQL和Streaming) Azkaban定时调度主题及指标统计分析 Kudu + Impala准实时分析系统 使用Hue集成Impala进行数据即席查询 ClickHouse实时存储及计算引擎 自定义数据源实现SparkSQL与Clickhouse整合 Elasticsearch 分布式全文检索 Spring Cloud 搭建数据服务 存储与计算性能调优
随着互联网、移动互联网、物联网和各种智能终端的快速发展,各种数据无时无刻地生成,新数据的产生成大爆炸趋势,如此大数据量的实时查询和分析能力已然成为企业报表分析系统的重要考量指标。
无论在股市还是车市上,新能源汽车早已站在了舞台中央。在一台台爆款新车的背后,是造车新势力们产品力和技术力的强强联手,更是数字营销和直营的绝妙组合。早在 2021 年,造车新势力们就已基本完成了销量的“原始积累”。根据各品牌的官方数据,以“蔚小理”为代表的造车新势力 Top3 年销量均已突破 9 万台,无限接近于 10 万台的里程碑。
👆点击“博文视点Broadview”,获取更多书讯 多数企业都意识到数据的重要性,都希望利用数据来驱动业务发展。但经常会听到这样一句话:“我们企业现在业务都还没做起来,连数据都没有,还不到考虑数据利用的时候。” 这句话在某种程度上代表了一部分企业对于数据利用的认知,即数据利用从先有数据开始。 而数据是在应用建设后存到数据库里的,所以先建设应用,然后等数据库里有了数据后,再考虑如何利用数据。 听上去,这个逻辑完全正确。但其实这就是很多企业对于数据利用的误解,即先建设应用,再考虑数据利用。 如果用这样的思路建
数据湖计算 DLC 通过类 SaaS 化的服务设计,为客户提供云原生企业级敏捷智能数据湖解决方案,具备以下特点:
4月23日下午,北京·国际会议中心203AB,好雨云资深工程师祁世垚将发表主题为《实时分析在业务监控中的应用》的演讲,欢迎各位导师现场聆听。 祁世垚目前是好雨云系统架构师,拥有6年互联网开发和运维经验
日志数据是典型的时序数据,因此,日志场景是时序数据库CTSDB的典型应用场景。下文主要描述如何用CTSDB搭建日志系统。
翻译自 Real-time Analytic Databases — Thing or Not a Thing?
在过去几年里,实时计算的受欢迎程度呈爆炸式增长。这源于互联网、物联网、人工智能技术的高速发展,以及国家政策层面的大力支持。然而,在企业层面上,实时计算这种技术仍难以得到有效应用。究其原因,主要在于技术门槛高,开发、运维成本难以控制,缺乏成熟的产品化功能。
互联网的发展,带来了各种数据的爆发式增长,所有接入互联网的相关操作行为,都化为虚拟的数据被记录了下来。大数据时代的带来,一个明显的变化就是全样本数据分析,面对TB/PB级及以上的数据规模,Hadoop成为主流选择。
能源管理信息化/自动化在企业信息管理系统中站有举足轻重的地位,这也是由能源在企业生产运营中的重要性所决定的。能源是所有现代企业赖以生存的基础性资源和前提条件,同时又是一项重要的成本开支,这些特点又以电力能源表现的最为普遍、最为鲜明。
网络安全态势越来越复杂,传统的基于单点的防护和攻击检测系统在应对现代网络攻击方面有着很大的局限性。
当下,海量数据结合前沿技术架构正在为保险业带来根本性的变革。本文以某知名保险机构为例,结合偶数行业实践经验,介绍保险企业如何利用湖仓一体技术推动数据战略转型升级。背景介绍在对该客户需求进行深度挖掘并横向比较行业现状后,我们发现:(1) 包括该客户在内的多数保险企业的数据分析场景较为单一,直接产生业务价值的数据挖掘不够丰富;(2) 该客户现有数据分析场景的效率、性能、用户体验都亟待提升。下文我们详细展开分析。业务场景分析客户现有的数据分析应用集中在经营分析、监管报送和风险管控等几个传统场景,其实不止该客户,目前大多数保险企业的大数据业务应用价值挖掘都还不够丰富。1.风险管控仅以目前多数保险企业都非常关注的风控环节为例,该客户仍以风险部门固定报表分析为主,而通过风险数据建模,应用在投保前风险排查、承保中风险管控及理赔时风险识别和反欺诈等全业务链条还非常有限。在投保环节,可以利用数据搭建风险评估模型,筛查高风险客户,对大概率产生负价值的客户采用拒保或者提高保费的方式以减少损失。以互联网场景下的意外险和健康险为例,由于投保手续较为简单,很多产品免体检,只需要填写投保人基本信息即可,这些业务中,很容易出现投保人隐瞒病情、造假家庭收入的情况,逆向选择甚至欺诈的可能性非常大。因此在投保场景下可以利用数据进行多维分析,及时发现高风险投保客户,避免欺诈行为的发生。在承保运营环节,相比较传统风控,大数据风控让保险机构对保险用户的动态跟踪反馈,定期对承保中用户信息进行维护,更新用户风险指数。此外,在加强用户信息安全管理和隐私方面,保险公司借助大数据和人工智能(如设备指纹、IP 画像、机器行为识别等工具)加以防范,在回访环节,根据用户情况及其手机在网状态选择拨打方式及话术,更有利于提高回访效率,提升客户体验。在理赔环节,大数据风控先通过构建模型的方式筛查出疑似欺诈的高风险案件,然后再人工重点审核和调查,减少现场查勘误差,提高查勘效率。除了风险管控,通过数据赋能业务还可以落地在其他几个重点保险场景中,包括产品创新、风险定价、精准获客。接下来我们展开说明下数据赋能这些场景的形式和实现逻辑。
为实现实时分析,通常需要付出巨大努力来实现查询层。开源 StarRocks 可以支持一种无需传统数据流水线即可进行数据分析的方法。
我之前呆过一家创业工作,是做商城业务的,商城这种业务,表面上看起来涉及的业务简单,包括:用户、商品、库存、订单、购物车、支付、物流等业务。但是,细分下来,还是比较复杂的。这其中往往会牵扯到很多提升用户体验的潜在需求。例如:为用户推荐商品,这就涉及到用户的行为分析和大数据的精准推荐。如果说具体的技术的话,那肯定就包含了:用户行为日志埋点、采集、上报,大数据实时统计分析,用户画像,商品推荐等大数据技术。
很多小伙伴留言说让我写一些工作过程中的真实案例,写些啥呢?想来想去,写一篇我在以前公司从零开始到用户超千万的数据库架构升级演变的过程吧。
本文转载自:AI前线 记者 | 冉叶兰 嘉宾 | 邓启斌 Hermes 是腾讯数据平台部自研的实时分析平台,在公司内服务于上百个业务,集群规模 5000 个节点,每日数据接入量 4 万亿,查询量千万级别。作为一个公共的平台,面对的业务场景非常复杂,包括在线高并发分析、即席交互分析、海量日志分析、实时接入数据和近实时增量更新。这样一个万亿级的实时计算开发引擎到底是怎么实现的?研发过程中遇到哪些难点?作为开发者,我该怎么借鉴和避免;作为用户,又有哪些新的思考? 在2021年4月22-24日举办的 QCo
特色:Tableau是小火龙接触的第一款开源可视化BI工具,其涵盖个人电脑Desktop软件及云端数据共享Server两种形态,可在其中切换配合应用。
随着大数据时代的发展,诞生了一大批大数据时代下的新数据库产品,如今MongoDB、Redis、HBase这些NoSQL数据库已经成为了互联网开发的新标配,SQL一统江湖的时代不复存在了。
在大数据时代,搜索是软件工程师的一项必备技能。而 Elasticsearch 就是一款功能强大的开源分布式搜索与数据分析引擎,在同领域内几乎没有竞争对手——近两年 DB-Engines 的数据库评测中,Elasticsearch 在搜索引擎领域始终位列第一。 Elasticsearch 不仅可以从海量数据中快速找到相关信息,还被广泛运用于大数据近实时分析,包括日志分析、指标监控、信息安全等多个领域。 它可以探索海量结构化、非结构化数据,按需创建可视化报表,对监控数据设置报警阈值,甚至通过机器学习自动识别异
什么是实时分析? 实时分析就是在数据生成后立即使用它来回答问题、做出预测、理解关系和自动化流程。 其定义为“将逻辑和数学应用于数据以提供洞察力以快速做出更好决策的学科。” 实时分析的核心需求是访问新鲜数据和快速查询,这本质上是延迟的两种衡量标准:数据延迟和查询延迟。
大数据,人工智能,工业物联网,5G 已经或者正在潜移默化地改变着我们的生活。在信息技术快速发展的时代,谁能抓住数据的核心,利用有效的方法对数据做数据挖掘和数据分析,从数据中发现趋势,谁就能做到精准控制,实时分析,有的放矢,从而获取更快速、更平稳、更长远地发展。
本文介绍了 SandiSolar+通过 TiDB Serverless 构建智慧新能源数据底座的思路与实践。作为一家致力于为全球提供清洁电力解决方案的新能源企业,SandiSolar+面临着处理大量实时数据的挑战。为了应对这一问题,SandiSolar+选择了 TiDB Serverless 作为他们的数据底座。TiDB Serverless 具有灵活扩展、按实际使用量付费、自动伸缩等特点,能够满足 SandiSolar+的实时数据处理需求。未来,SandiSolar+计划在 TiDB Serverless 基础上开发实时计费、高频交易等功能,为光伏产业探索更深层次的服务与盈利模式。
但在介绍 Elasticsearch 应用场景的时候,之前我也写过几篇,总感觉字多图少,对于初学者或者数据库、技术栈选型的企业用户并不直观、友好。
Pinot 是一个实时分布式 OLAP 数据存储,专为提供超低延迟分析而构建,即使在极高吞吐量下也是如此。 它可以直接从流数据源(例如 Apache Kafka 和 Amazon Kinesis)中摄取,并使事件可用于即时查询。 它还可以从 Hadoop HDFS、Amazon S3、Azure ADLS 和 Google Cloud Storage 等批处理数据源中摄取。
利用 CDC,您可以从现有的应用程序和服务中获取最新信息,创建新的事件流或者丰富其他事件流。CDC赋予您实时访问后端数据库的能力。
危化品属于危险、易燃易爆、易中毒行类,一旦在生产运输过程中发生泄漏后果不堪想象,所以危化品的生产储存更需要严密、精细的监控,来保障危化品的安全。AI智能分析网关搭建的危化品智能监控方案就能很好的为危化品监管保驾护航。
领取专属 10元无门槛券
手把手带您无忧上云