(也就是全连接),然而卷积网络具有稀疏交互的特征.使核的大小远小于输入大小完成.我们用小的核检测那些小的且有意义的特征....其中一个关键的洞察是卷积和池化可能导致欠拟合。与任何其他先验类似,卷积和池化只有当先验的假设合理且正确时才有用。如果一项任务依赖于保存精确的空间信息,那么在所有的特征上使用池化将会增大训练误差。...., 2014a) 为了既获得具有较高不变性的特征又获得当平移不变性不合理时不会导致欠拟合的特征,被设计成在一些通道上使用池化而在另一些通道上不使用。...基本卷积函数的变体
首先,当我们提到神经网络中的卷积时,我们通常是指由多个并行卷积组成的运算。这是因为具有单个核的卷积只能提取一种类型的特征,尽管它作用在多个空间位置上。...因为卷积网络通常使用多通道的卷积,所以即使使用了核翻转,也不一定保证网络的线性运算是可交换的。