👆点击“博文视点Broadview”,获取更多书讯 数据分析是一门艺术。 做好数据分析不是一件容易的事情,既要了解业务,又要有数据意识和思维,还要懂得分析方法,熟练使用分析工具。 博文菌最近发现几本持续霸榜的新书和经典书,迫不及待地想要分享给大家,希望可以帮助大家掌握一套正确的数据分析体系,并熟练地应用到实际业务问题的解决中! ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合 作者累计创作 “100+”
最近整理了20张数据分析的知识地图,话不多说直接上图 1、数据分析步骤地图 2、数据分析基础知识地图 3、数据分析技术知识地图 4、数据分析业务流程 5、数据分析师能力体系 6、数据分析思路体系 7、电商数据分析核心主题 8、数据科学技能书知识地图 9、数据挖掘体系 10、python学习路径 11、线下店铺数据分析 12、小程序数据分析 13、用户分析 14、用户画像法 15、Excel常用公式 16、Excel透视表 17、
导读:这个年代里,“用数据说话”已经像是一种过气的口号。各行各业不同角色和身份的人们都已懂得“用数据说话”的重要性,甚至日常生活中也需要用数据看清事实,科学吃瓜。所以,当前的重点已经超越了“用数据说话”,而是“怎样用数据说话”。
👆点击“博文视点Broadview”,获取更多书讯 上期书单分享的一季度重磅级上榜新书都是技术开发类图书,对于非开发的小伙伴们来说可能不够友好,所以本期就来分享几本大众一点的数据办公类图书! 这几本书都是近期数据办公类的畅销新书,希望帮助大家用好数据分析解决实际业务问题,高效使用办公软件,从此告别加班,走上人生巅峰呀~~ ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 用数据思维指导业务实战 互联网大厂资深数据分析师精心撰写 原创文章全网累计阅读量超10
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
一文学会如何做电商数据分析(附运营分析指标框架) 电子商务该如何做数据分析?如何数据分析入门(从各项指标表象进入) https://www.processon.com/outline/6589838c3129f1550cc69950
数据实验楼电商数据分析综合实训项目正式发布,欢迎大家体验! http://idatacoding.cn/project_main?project_id=7 重要提示 数据实验楼面向全国高校师生提供服
其实销售并不是大家想的那样,在路边向陌生人推销东西,互联网公司的销售对数据的依赖比我们想象的要大得多。提高销售人员拜访效率的秘密武器就是对庞大的客户群产生的数据进行分析,进行用户画像,从而有针对性的拜访,很多大公司的销售支持岗位明确要求有数据分析能力。
作为一名长期扎根在爬虫行业的专业的技术员,我今天要和大家分享一些有关Python爬虫在电商数据挖掘中的应用与案例分析。在如今数字化的时代,电商数据蕴含着丰富的信息,通过使用爬虫技术,我们可以轻松获取电商网站上的产品信息、用户评论等数据,为商家和消费者提供更好的决策依据。在本文中,我将为大家讲解Python爬虫在电商数据挖掘中的应用,并分享一些实际操作价值高的案例。
电商行业是当前市场十分火热的行业,也是对数据分析师需求很大的行业,这篇文章可以帮助没有电商行业经验的同学快速了解电商数据分析的指标和框架。那么话不多说,咱们开始吧~
今天给大家分享几个我收藏的宝藏公众号资源。涵盖了Python基础、爬虫、数据分析、数据可视化、算法与人工智能等优质资源,关注之后肯定会大有收货~
在一家年销售不到10亿的电商公司(行业中大部分电商企业年销售可能都不到1个亿),你只要掌握一些基础的数据分析方法,再配合Excel表格,就足够你完成各种数据化运营工作了。
👆点击“博文视点Broadview”,获取更多书讯 11月新书速递 虽然快到年底了,但是我们丝毫没有懈怠,依然快马加鞭地把好书源源不断地奉献给大家! 本月新书实在有些多,所以本期书单挑选了部分技术图书分享给大家,其中既有游戏界绝对的王者《腾讯游戏开发精粹II》,又有新锐技术Pulsar、SequoiaDB的相关著作,还有一应俱全的微服务一本通、有趣好玩的算法书和Python自动化办公图书,具体都有哪几本,快来看看吧~~ ---- 01 ▊《腾讯游戏开发精粹Ⅱ》 腾讯游戏 著 腾讯官方出品,领域经
大家好,我是零一,今天继续我们的话题,从0开始,教你做数据分析。我的公众微信号是start_data,欢迎大家关注。 现在已经是第四篇了,不知道前三篇大家消化得怎么样。 其实大家不必太在意数据源,你有了数据源不会分析,是浪费资源,而数据源是迟早会有的。独立电商就不用说了,如果是平台,无论是哪个平台未来都会逐渐开放数据给卖家们,让卖家们自己分析数据做相应的营销推广决策。 从另一个角度讲,电商数据分析,是为了降低电商的成本,提高电商的营收能力。 所以今天,无论是产品经理还是店长,都越来越需要数据分析的能力,面对
大数据文摘出品 记者:闫雨莹、魏子敏 本文为清华数据科学研究院联合大数据文摘发起的年度白皮书《顶级数据团队建设全景报告》系列专访的第一篇内容。《报告》囊括专家访谈、问卷、网络数据分析,力求为行业内数据团队的组建和高校数据人才的培养提供指导性意见。前往文末参与填写问卷,将获得《报告》完整版~ 传统行业的数据化转型一直是个热门但棘手的课题。 媒体、行业报告中曝光的例子往往让人心动:处于发展早期、体量相对小的公司,通过几个月的部署,迅速引入大数据领域人才、上马一套完整的数据库,并建立较完整的数据搜集分析流程,产
数据分析在各行各业的应用 计算机、金融、财务会计、医药专业、艺术专业、语言类专业、法律专业、设计、电商 相信很多人都听到过不少次数据分析这一词,而数据分析这个次近几年来随着互联网的快速发展,成为商业世界中的流行语 很多具有远见卓识的公司很早就已经开始去“智能地使用数据”,来收集用户行为画像,对业务进行风险分析或者是对企业进行更有效地管理 一般来说越是大型的,数据丰富的公司,尤其是那些会有严格监管的大型公司,多年来一直从事以数据为主导的决策 企业为更好地了解其客户而进行的数据分析先驱-随后的数据分析被用于开展针对性强的目标有影响力的营销活动,来引导企业进行更快速的成长, 下面开门见山带大家看一下数据分析岗位所在的典型行业
4.掌握大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用。
数据猿导读 大数据作为技术热点和转型升级的支撑工具,不管是个人、企业和政府都很期待。但2016年在解决用户实际问题的过程中,发现用户对大数据的理解上存在一些误区,我觉得有必要更清晰地描述出来。 作者
如今,全球早已步入数据时代,随着行业的高速发展,相关岗位缺口已超150万,且薪资超同行业50%。未来十年,数据细分岗位将扩张5倍,各行业数据人才缺口明显。
数据产品是个新兴的产品分类,每个人眼里都有一个自己的数据产品,尽管在绝大部分人的概念中都是一堆报表。在过去的 3 年里,我们在用户需求的推动下一步步构建了网易严选数据产品体系,下文分享我们在构建过程中自己的一些思考和总结。
原文:https://maoli.blog.csdn.net/article/details/104461970
最开始我是被Python吸引到的,当时隐隐有点往程序员方向靠。每天下了班到家就是4小时学习,最终报某课程被收割了2000智商税。
1、来源 有哪些你看了以后大呼过瘾的数据分析书? https://www.zhihu.com/question/60241622 做数据分析不得不看的书有哪些? https://www.zhihu.com/question/19640095 2、采集回答 3、清洗:去除空行、去重 4、统计分析 5、两个帖子中都有回答的作者,考虑大V、书商、利益相关者 作者 计数 大数据峰哥 3 Bottle 2 DataCastle数据城堡 2 DataHunter 2 George Li 2 GrowingIO 2
2017年6月22日,由大数据产业联合会主办,清数D-LAB承办的《清华大数据思享会》在学研大厦圆满完成,来自中国电信北京研究院灯塔大数据产品线的产品总监钱兵,在会上分享了中国电信在泛娱乐大数据媒体营
新零售时代,电商抢尽了实体零售的风头。面对冲击,实体购物中心该如何突围、留住顾客?答案也许是数据。11月16日的数据侠线上实验室活动中,中商数据副总裁李静雅用具体的案例,为我们解读了引入数据分析系统可能给购物中心带来的变化。
<数据猿导读> 随着产业升级,越来越多消费者选择电商而非实体超市购买商品,大数据的应用也不再局限于商家手里掌握的销售数据,而是转向如今网络时代更为关心的用户参与感、口碑传播,消费者的评价数据成为新的金
“氢元数据”定位于基础数据服务商。开发服务的先行者,平台是以自有数据为基础,通过各种便捷服务整合及第三方数据接入,为互联网开发全行业提供标准化API技术支撑服务平台。 公司提供API数据推送和定制化数
近年来,无论你在刷微博、微信朋友圈、QQ空间、小窗口等等,都会在无疑中看到广告,而且那条广告还是你关注的,恭喜你,你被精准营销了。最高境界的精准营销,无限趋近于“私人订制”。此时,每个用户收到的广告都是量身定制的。这是无数广告业者正在追求的境界。 6月29日晚,中国电信北京研究院灯塔大数据产品线产品总监、CDA二级数学建模师——钱兵,就《大数据时代的广告精准营销》与大家分享运营商数据在助力广告精准营销和效果评估方面的心得,为大数据百人会社群带来一个多小时的精彩演讲。 当前在各类数据资源市场鱼龙混杂良莠不齐的
其实,各行各业都有自己的分析师,比如金融类的就有证券分析师、金融分析师、股票分析师;统计类的就有数据分析师、调查分析师、信息分析师……
运营商已跨入大数据时代 由于网络的快速发展和智能机的快速拓展,目前已经进入移动互联网时代,移动数据流量大幅增加。 造就该趋势主要有两个原因:第一,运营商大力推广3G 甚至4G 智能手机,支持高速宽带的智能终端得到进一步普及;第二,移动网民规模持续增长,而在智能终端的支持下,网民对移动服务的需求也在持续增加。 目前,运营商在数据的采集上进展迅速。三大运营商普遍已在2012 年起开始进行大数据中心的建设,并于2013 年起开始陆续收集大数据(如图表2),开始累积比较完整的用户信息;进入20
金融科技领域的数据,从数据结构角度观察,分为结构化数据、半结构化数据和非结构化数据;从数据所有权角度观察,分为自有数据和第三方数据;从数据作用角度观察,分为营销类数据、风控类数据、财务类数据等。不同角度观察,可以梳理不同数据划分类型。
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
人是视觉动物,要用数据把一个故事讲活,图表是必不可少的。如果你经常看到做数据分析同事,在SQL客户端里执行完查询,把结果复制/粘贴到 Excel 里再做成图表,那说明你的公司缺少一个可靠的数据可视化平台。数据可视化是 Business Intelligence(BI)中的核心功能,有许多成熟的商用解决方案,如老牌的 Tableau,Qilk,新生代的 Looker,国内的 FineBI 等等。不过对于许多小公司来说,这些服务的 License 费用是一笔不小的开销,且有一种“杀鸡用牛刀”的感觉。
【数据分析三字经】①学习:先了解,后深入;先记录,后记忆;先理论,后实践;先模仿,后创新; ②方法:先思路,后方法;先框架,后细化;先方法,后工具;先思考,后动手; ③分析:先业务,后数据;先假设,后验证;先总体,后局部;先总结,后建议; 做数据分析首先是熟悉业务及行业知识,其次是分析思路清晰,再次才是方法与工具,切勿为了方法而方法,为工具而工具。 【数据分析的3点要求】第一,熟悉业务,不熟业务,分析的结果将脱离实际,业无从指导;第二,多思考,只有经常发问为什么是这样的?为什么不是那样的?只有这样才有突破点
人是视觉动物,要用数据把一个故事讲活,图表是必不可少的。如果你经常看到做数据分析同事,在SQL客户端里执行完查询,把结果复制/粘贴到Excel里再做成图表,那说明你的公司缺少一个可靠的数据可视化平台。数据可视化是Business Intelligence(简称BI)中的核心功能,有许多成熟的商用解决方案,如老牌的Tableau, Qilk,新生代的Looker,国内的FineBI等等。不过对于许多小公司来说,这些服务的License费用是一笔不小的开销,且有一种“杀鸡用牛刀”的感觉。那在开源软件如此发达的今天,在数据可视化方面,有什么靠谱的方案可以选择呢?今天给大家介绍三个比较知名的项目,分别是Superset, Redash和Metabase。前两个我都在产生环境中实际使用过,在本文中会重点介绍。Metabase我只是试玩了一下,但我觉得这是一个非常有想法的项目,所以也会和大家聊聊我对它的看法。
文章来源于36大数据 信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数据处理、数据分析和数据挖掘能力。无论是电商平台(如淘宝)还是在电
数据科学 人类探索世界的新工具 未来,是一个数据服务的时代。 数据科学作为探索数据世界奥秘的工具正在逐步被人类像材料学一样掌握,数据思维、数据治理、数据分析与挖掘、数据可视化,正在逐步迭代人类工业时代的经验思维、品质管控、材料工程、制造工艺、工业设计等知识技能体系。 数据不仅改变了世界,也给人们提供了新的职业发展机遇,抓住机遇的这些人成为了在大数据时代披荆斩棘的革命者。 达观数据参与编写《数据实践之美》 现在,知名数据技术社区天善智能把大数据时代的革命者们聚集在一起。 来自百度、腾讯、IBM、埃森哲、达观
在大数据时代,企业对数据处理的需求日益增长,特别是在实时数据分析方面。StarRocks 是一种新兴的分布式关系型数据库,专为快速且高并发的实时分析设计。本文将从 StarRocks 的基本概念入手,逐步深入到其应用层面,探讨这一技术如何在现实世界中发挥作用。
最近流传一句话,不会数据分析的程序员,不是好程序员。 其实,不仅仅程序员,无论你未来准备从事什么职业:产品、运营、销售、HR、财务、金融、电商,还是做研发、系统架构,你都会发现,在数不清的岗位需求中,公司对数据分析的能力要求越来越普遍! 有人说,毕业生学数据分析很占优势,因为学得快 有人说,毕业生没有工作经验是优势,可以直接上岗… 有人说,数据分析行业前景好,薪资高,是工作的好选择… 有人说,学数据分析永不过时… 但!数据分析到底是什么?离我们远吗 恰恰相反,数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹,大到企业的销售、运营数据,产品的生产数据,再看看我们每天在做的事情,上知乎、上微博、逛淘宝,上Google,所有的地方都是高度需要数据分析 数据分析当然重要,一般单位还是用excel表格在统计数据 而数据分析,就是就是将数据的价值最大化 借助数据来做决策,而不是盲目地拍脑袋
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群:
本文为HCR-慧思拓电商数据研究总监张淳投稿,如需转载请注明作者与来源。 传统研究时代,知觉图(perceptual map)是一个简洁直观解析品牌定位的经典工具,然而随着大数据时代的降临,传统的数据获取方法受到了不断的冲击,原来使用焦点小组(Focus Group) 或调研问卷获得数据变成了一项费时费力,且耗费成本的工作。大数据背景下,可不可以有更简单,更快捷的方式获知品牌及其竞争对手的定位?可不可以快速评价品牌定位是否达到目标位置?可不可以全面检验修正品牌传播策略正确与否?这些问题都值得我们来探讨。 知
最近数据分析真的很火,很多人想学,在大数据这个概念的催生下,数据分析俨然成为了职场的必备技能之一,而很多教育培训机构或者个人也非常会抓住商机,在普遍焦虑的情况下,推出了非常多的数据分析课程,从互联网数据分析、电商数据分析到零售数据分析,从数据抓取、数据分析、数据挖掘到数据可视化,可谓百花齐放。
很多人觉得数据分析是一个很高深的技能,要学会数据分析好像要会很多专业的软件,然后要和很多的数字打交道,要逻辑感非常强,其实数据分析没有大家想象的那么复杂,通过学习你也可以学会人力资源的数据分析。
Online-to-Offline( 简称 O2O) 电子商务模式,是一个连接线上用户和线下商家的多边平台商业模式。 O2O 商业模式将实体经济与线上资源融合在一起,使网络成为实体经济延伸到虚拟世界的渠道; 线下商业可以到线上挖掘和吸引客源,而消费者可以在线上筛选商品和服务并完成支付,再到实体店完成余下消费。 它最先由 TrialPay 创始人 AlexRampell提出,在 2006 年沃尔玛公司的 B2C 战略中予以应用,随后以网络团购形式为大家所熟知。 目前 O2O电子商务与社交网络和移动终端紧密结合
以BAT为代表的中国互联网企业,在数据领域各有千秋,百度的搜索数据、阿里的电商数据、腾讯的社交数据。对于手里的数据如何使用,这些公司正在尝试数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。 谁拥有中国最多的数据,答案是80%以上的数据都掌握在政府手里;那么谁是中国最大的大数据企业,是BAT中的某一家,还是银行、通信运营商、制造工厂…… 6月份,腾讯发布了一份用大数据描绘的中国数字经济地图。这份覆盖335个城市的《中国“互联网+指数”(2016)报告》的发布,吸引了千余名中国政府官
本报记者 周慧 北京报道 导读 以BAT为代表的中国互联网企业,在数据领域各有千秋,百度的搜索数据、阿里的电商数据、腾讯的社交数据。对于手里的数据如何使用,这些公司正在尝试数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。 谁拥有中国最多的数据,答案是80%以上的数据都掌握在政府手里;那么谁是中国最大的大数据企业,是BAT中的某一家,还是银行、通信运营商、制造工厂…… 6月份,腾讯发布了一份用大数据描绘的中国数字经济地图。这份覆盖335个城市的《中国“互联网+指数”(2016)报告
我们团队每周开会讨论问题的时候,都会对每天的增长数据进行复盘。期间,领导常常会提及「数据思维」这个词。 这就涉及到,你必须要有思维能力,去支撑你在看到数据时,会从多维度去分析,而不是只看到表面数字这么简单而已,否则就是抓瞎。 数据时代,无论你是做产品,运营,还是做研发,系统架构,乃至于安全风控,都会发现,数据思维是考验你能力提升的重要指标。 但其实,很多人只是掌握了数据分析的工具和技能,却做不好数据分析,无法让数据产生真正的价值。 比如有的新闻:「某市的人均住房面积是 120 平米」「计算机行业人均年收入
领取专属 10元无门槛券
手把手带您无忧上云