数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
其实,各行各业都有自己的分析师,比如金融类的就有证券分析师、金融分析师、股票分析师;统计类的就有数据分析师、调查分析师、信息分析师……
👆点击“博文视点Broadview”,获取更多书讯 数据分析是一门艺术。 做好数据分析不是一件容易的事情,既要了解业务,又要有数据意识和思维,还要懂得分析方法,熟练使用分析工具。 博文菌最近发现几本持续霸榜的新书和经典书,迫不及待地想要分享给大家,希望可以帮助大家掌握一套正确的数据分析体系,并熟练地应用到实际业务问题的解决中! ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合 作者累计创作 “100+”
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
大数据文摘出品 记者:闫雨莹、魏子敏 本文为清华数据科学研究院联合大数据文摘发起的年度白皮书《顶级数据团队建设全景报告》系列专访的第一篇内容。《报告》囊括专家访谈、问卷、网络数据分析,力求为行业内数据团队的组建和高校数据人才的培养提供指导性意见。前往文末参与填写问卷,将获得《报告》完整版~ 传统行业的数据化转型一直是个热门但棘手的课题。 媒体、行业报告中曝光的例子往往让人心动:处于发展早期、体量相对小的公司,通过几个月的部署,迅速引入大数据领域人才、上马一套完整的数据库,并建立较完整的数据搜集分析流程,产
其实销售并不是大家想的那样,在路边向陌生人推销东西,互联网公司的销售对数据的依赖比我们想象的要大得多。提高销售人员拜访效率的秘密武器就是对庞大的客户群产生的数据进行分析,进行用户画像,从而有针对性的拜访,很多大公司的销售支持岗位明确要求有数据分析能力。
新一轮“618”大促火热进行中。此前,各大电商平台纷纷宣布,今年将取消往年的预售模式,改为直接开售配合官方补贴的策略。外部多将这一变化解读为行业顺应市场呼唤、积极创新的结果。
作为一名长期扎根在爬虫行业的专业的技术员,我今天要和大家分享一些有关Python爬虫在电商数据挖掘中的应用与案例分析。在如今数字化的时代,电商数据蕴含着丰富的信息,通过使用爬虫技术,我们可以轻松获取电商网站上的产品信息、用户评论等数据,为商家和消费者提供更好的决策依据。在本文中,我将为大家讲解Python爬虫在电商数据挖掘中的应用,并分享一些实际操作价值高的案例。
电商行业是当前市场十分火热的行业,也是对数据分析师需求很大的行业,这篇文章可以帮助没有电商行业经验的同学快速了解电商数据分析的指标和框架。那么话不多说,咱们开始吧~
数据产品是个新兴的产品分类,每个人眼里都有一个自己的数据产品,尽管在绝大部分人的概念中都是一堆报表。在过去的 3 年里,我们在用户需求的推动下一步步构建了网易严选数据产品体系,下文分享我们在构建过程中自己的一些思考和总结。
导读:这个年代里,“用数据说话”已经像是一种过气的口号。各行各业不同角色和身份的人们都已懂得“用数据说话”的重要性,甚至日常生活中也需要用数据看清事实,科学吃瓜。所以,当前的重点已经超越了“用数据说话”,而是“怎样用数据说话”。
湖仓一体实时电商项目是基于某宝商城电商项目的电商数据分析平台,本项目在技术方面涉及大数据技术组件搭建,湖仓一体分层数仓设计、实时到离线数据指标分析及数据大屏可视化,项目所用到的技术组件都从基础搭建开始,目的在于湖仓一体架构中数据仓库与数据湖融合打通,实现企业级项目离线与实时数据指标分析。在业务方面目前暂时涉及到会员主题与商品主题,分析指标有用户实时登录信息分析、实时浏览pv/uv分析、实时商品浏览信息分析、用户积分指标分析,后续还会继续增加业务指标和完善架构设计。
在一家年销售不到10亿的电商公司(行业中大部分电商企业年销售可能都不到1个亿),你只要掌握一些基础的数据分析方法,再配合Excel表格,就足够你完成各种数据化运营工作了。
最近整理了20张数据分析的知识地图,话不多说直接上图 1、数据分析步骤地图 2、数据分析基础知识地图 3、数据分析技术知识地图 4、数据分析业务流程 5、数据分析师能力体系 6、数据分析思路体系 7、电商数据分析核心主题 8、数据科学技能书知识地图 9、数据挖掘体系 10、python学习路径 11、线下店铺数据分析 12、小程序数据分析 13、用户分析 14、用户画像法 15、Excel常用公式 16、Excel透视表 17、
👆点击“博文视点Broadview”,获取更多书讯 上期书单分享的一季度重磅级上榜新书都是技术开发类图书,对于非开发的小伙伴们来说可能不够友好,所以本期就来分享几本大众一点的数据办公类图书! 这几本书都是近期数据办公类的畅销新书,希望帮助大家用好数据分析解决实际业务问题,高效使用办公软件,从此告别加班,走上人生巅峰呀~~ ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 用数据思维指导业务实战 互联网大厂资深数据分析师精心撰写 原创文章全网累计阅读量超10
近年来,随着众多传统外贸行业转向跨境电商行业,众多海外市场的开发和订单数量的暴增,跨境电商ERP系统也因此受到更多的“青睐”。
4.掌握大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用。
数据猿导读 大数据作为技术热点和转型升级的支撑工具,不管是个人、企业和政府都很期待。但2016年在解决用户实际问题的过程中,发现用户对大数据的理解上存在一些误区,我觉得有必要更清晰地描述出来。 作者
DT时代 数据就是变量 何谓“数据×”?即乘数效应。在中国经济新常态大背景下,我们以大数据应用为战略引领,实现了从“互联网+”到“大数据×”的融合效应,打通大数据成果向现实生产力转化的通道。 我国大数据产业离爆发期为期不远,目前正是大数据产业的上升发展期,国家提出的“互联网+”政策暖风又起到了一定的推动作用,无论是产业资本、企业科技投入,还是政府应用大数据服务国计民生,我认为,目前阶段应该是进入到大数据领域最好的时间。——北京明略软件系统有限公司技术副总裁,金融事业部总经理 周卫天:金融时代已经来临 与
如今,全球早已步入数据时代,随着行业的高速发展,相关岗位缺口已超150万,且薪资超同行业50%。未来十年,数据细分岗位将扩张5倍,各行业数据人才缺口明显。
我们先从数据能力开始,先看看数据领域常见的3个岗位的招聘需求,每个岗位的一些重点,我都用橙色字体专门提炼出来了
一文学会如何做电商数据分析(附运营分析指标框架) 电子商务该如何做数据分析?如何数据分析入门(从各项指标表象进入) https://www.processon.com/outline/6589838c3129f1550cc69950
本项目由观远数据投递并参与“数据猿年度金猿策划活动——《2022大数据产业最具投资价值企业》榜单/奖项”评选。
针对建材企业的交易特点,构建B2B交易平台,提供适用建筑建材的系统化功能,强化连接、销售、服务、数据驱动的能力,让交易更简单!
同比: 与历史同时期比较,就是与不同年份(月份)的同一时期作比较,例如2005年7月份与2004年7月份相比,叫同比。
最开始我是被Python吸引到的,当时隐隐有点往程序员方向靠。每天下了班到家就是4小时学习,最终报某课程被收割了2000智商税。
数据实验楼电商数据分析综合实训项目正式发布,欢迎大家体验! http://idatacoding.cn/project_main?project_id=7 重要提示 数据实验楼面向全国高校师生提供服
真诚的向大家推荐,《腾讯课堂数据分析师认证课程》,该课程也是腾讯课堂指定认证课程。专为在校学生、0~3年职场新人量身定制,真正体系化、专业化帮大家提升数据分析能力,成为大厂抢手的数据分析人才。 10种商业模型 面对不同的场景,应用不同分析模型解决问题 5W2H分析模型、AARRR分析模型、RFM客户价值模型、A/B 测试模型、用户分成模型、SWOT分析模型、购物篮分析模型、波士顿矩阵分析、生命周期模型、企业战略模型 9大企业项目实战 全程直播教学 每个项目均由多位专业数据分析师精心挑选,从数据到课程知识
2017年6月22日,由大数据产业联合会主办,清数D-LAB承办的《清华大数据思享会》在学研大厦圆满完成,来自中国电信北京研究院灯塔大数据产品线的产品总监钱兵,在会上分享了中国电信在泛娱乐大数据媒体营
<数据猿导读> 随着产业升级,越来越多消费者选择电商而非实体超市购买商品,大数据的应用也不再局限于商家手里掌握的销售数据,而是转向如今网络时代更为关心的用户参与感、口碑传播,消费者的评价数据成为新的金
“氢元数据”定位于基础数据服务商。开发服务的先行者,平台是以自有数据为基础,通过各种便捷服务整合及第三方数据接入,为互联网开发全行业提供标准化API技术支撑服务平台。 公司提供API数据推送和定制化数
近年来,无论你在刷微博、微信朋友圈、QQ空间、小窗口等等,都会在无疑中看到广告,而且那条广告还是你关注的,恭喜你,你被精准营销了。最高境界的精准营销,无限趋近于“私人订制”。此时,每个用户收到的广告都是量身定制的。这是无数广告业者正在追求的境界。 6月29日晚,中国电信北京研究院灯塔大数据产品线产品总监、CDA二级数学建模师——钱兵,就《大数据时代的广告精准营销》与大家分享运营商数据在助力广告精准营销和效果评估方面的心得,为大数据百人会社群带来一个多小时的精彩演讲。 当前在各类数据资源市场鱼龙混杂良莠不齐的
人是视觉动物,要用数据把一个故事讲活,图表是必不可少的。如果你经常看到做数据分析同事,在SQL客户端里执行完查询,把结果复制/粘贴到 Excel 里再做成图表,那说明你的公司缺少一个可靠的数据可视化平台。数据可视化是 Business Intelligence(BI)中的核心功能,有许多成熟的商用解决方案,如老牌的 Tableau,Qilk,新生代的 Looker,国内的 FineBI 等等。不过对于许多小公司来说,这些服务的 License 费用是一笔不小的开销,且有一种“杀鸡用牛刀”的感觉。
人是视觉动物,要用数据把一个故事讲活,图表是必不可少的。如果你经常看到做数据分析同事,在SQL客户端里执行完查询,把结果复制/粘贴到Excel里再做成图表,那说明你的公司缺少一个可靠的数据可视化平台。数据可视化是Business Intelligence(简称BI)中的核心功能,有许多成熟的商用解决方案,如老牌的Tableau, Qilk,新生代的Looker,国内的FineBI等等。不过对于许多小公司来说,这些服务的License费用是一笔不小的开销,且有一种“杀鸡用牛刀”的感觉。那在开源软件如此发达的今天,在数据可视化方面,有什么靠谱的方案可以选择呢?今天给大家介绍三个比较知名的项目,分别是Superset, Redash和Metabase。前两个我都在产生环境中实际使用过,在本文中会重点介绍。Metabase我只是试玩了一下,但我觉得这是一个非常有想法的项目,所以也会和大家聊聊我对它的看法。
👆点击“博文视点Broadview”,获取更多书讯 11月新书速递 虽然快到年底了,但是我们丝毫没有懈怠,依然快马加鞭地把好书源源不断地奉献给大家! 本月新书实在有些多,所以本期书单挑选了部分技术图书分享给大家,其中既有游戏界绝对的王者《腾讯游戏开发精粹II》,又有新锐技术Pulsar、SequoiaDB的相关著作,还有一应俱全的微服务一本通、有趣好玩的算法书和Python自动化办公图书,具体都有哪几本,快来看看吧~~ ---- 01 ▊《腾讯游戏开发精粹Ⅱ》 腾讯游戏 著 腾讯官方出品,领域经
数据分析在各行各业的应用 计算机、金融、财务会计、医药专业、艺术专业、语言类专业、法律专业、设计、电商 相信很多人都听到过不少次数据分析这一词,而数据分析这个次近几年来随着互联网的快速发展,成为商业世界中的流行语 很多具有远见卓识的公司很早就已经开始去“智能地使用数据”,来收集用户行为画像,对业务进行风险分析或者是对企业进行更有效地管理 一般来说越是大型的,数据丰富的公司,尤其是那些会有严格监管的大型公司,多年来一直从事以数据为主导的决策 企业为更好地了解其客户而进行的数据分析先驱-随后的数据分析被用于开展针对性强的目标有影响力的营销活动,来引导企业进行更快速的成长, 下面开门见山带大家看一下数据分析岗位所在的典型行业
很多同学希望加入数据之路,很多同学想在数据之路上更上一层楼。可是,你真的知道,企业口中的“数据分析师”是啥玩意吗?有经验的老鸟都切身体会过,在数据分析师的名字下,隐含了大量乱七八糟的情况。
据艾媒咨询 (iMedia Research)数据显示,2019年上半年,中国的网络零售总额已达到195209.7亿元,尽管前有阿里、京东、拼多多、苏宁等行业巨头抢占市场,但剩余的蛋糕仍然可以满足其他中部乃至尾部企业的需求。
金融科技领域的数据,从数据结构角度观察,分为结构化数据、半结构化数据和非结构化数据;从数据所有权角度观察,分为自有数据和第三方数据;从数据作用角度观察,分为营销类数据、风控类数据、财务类数据等。不同角度观察,可以梳理不同数据划分类型。
自2016年“新零售”的概念被提出后,各大零售纷纷开始部署转型措施。从零售业发展来看,从卖方市场向买方市场的转变,导致传统零售以线下门店为主导、商品为中心模式的瓶颈逐渐显现,这也迫使传统零售商纷纷向以顾客为中心的经营模式转变,并更加重视强化品类管理、优化供应链。
数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。
韩光祖,腾讯云 TVP,现任上海腾展长融董事 & CTO。美国南加州大学企管硕士,曾任富邦华一銀行总部渠道与数字银行部副总裁及总部信息科技部副总裁、纬创集团 WistronITS 全球总部首席信息官 、企业资安主委、子辰国际开发(央企港银博源基金)技术顾问兼任 COO (投资)、新蛋网全球科技及委外服务总监、外资银行科技一级部主管 12 年。有 20 余年企业 IT/MIS/IS 营运经验,有 DD、私募债权融资、工业地产交易与股权转让、跨境金融财务、科技发展与创新经验。并且也拥有多年大型电商行业从业及银行核心系统更换经验, 熟悉信息化、数实化、商业系统分析、云架构及云迁移、电信公有云建置及开发、整合; 并熟悉研发、产品、售前、交付、售后等业务;甚至包括专业的服务解决方案、规划、实施、建立大型资料分析、资料采集及深度学习图像物件侦测的AI工艺辅助决策和熟悉企业整体战略规划与实施。
文章来源于36大数据 信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数据处理、数据分析和数据挖掘能力。无论是电商平台(如淘宝)还是在电
【数据分析三字经】①学习:先了解,后深入;先记录,后记忆;先理论,后实践;先模仿,后创新; ②方法:先思路,后方法;先框架,后细化;先方法,后工具;先思考,后动手; ③分析:先业务,后数据;先假设,后验证;先总体,后局部;先总结,后建议; 做数据分析首先是熟悉业务及行业知识,其次是分析思路清晰,再次才是方法与工具,切勿为了方法而方法,为工具而工具。 【数据分析的3点要求】第一,熟悉业务,不熟业务,分析的结果将脱离实际,业无从指导;第二,多思考,只有经常发问为什么是这样的?为什么不是那样的?只有这样才有突破点
文:傅志华 大数据的产业链从整体上可以分为四大层,包括IT基础层、数据基础层、数据应用层和数据安全层。个人认为在中国市场对于创业者来说,数据应用层的创业机会最多,想象空间也最大。 本文将重点介绍数据应
领取专属 10元无门槛券
手把手带您无忧上云