首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习策略(2)

    假设正在调试猫分类器,然后取得了90%准确率,相当于10%的误差,这离希望的目标还很远。看了算法分类错误的例子,注意到算法将一些狗分类成猫。所以这里考虑是否做 一个项目专门处理狗,这个项目可能花几个月时间才能将分类狗的算法做好,在狗图片上犯更少的错误,与其做这个项目花几个月时间而且结果未知。 这里有个误差分析流程,可以让你知道这个方向是否值得努力。 1.收集一下比如100个错误标记的开发集例子,查看开发集里面有多少错误 标记的例子是狗。假设你的100个错误标记例子中只有5%是狗,这意味着100个例子,在典型的100个出错例子中,即使你完全解决了狗的问题,也只能修正这100个错误中的5个;现在假设发生了另外一件事,100个错误标记的开发集例子,实际有50张都是狗,现在花时间解决狗的问题可能效果就很好,这种情况下如果解决了狗的问题,那么你的误差就可能从10%下降到5%了。通过人工查看就可以知道你改进的方向有多少价值。

    02

    PCL综述—三维图像处理

    三维图像是一种特殊的信息表达形式,其特征是表达的空间中三个维度的数据。和二维图像相比,三维图像借助第三个维度的信息,可以实现天然的物体-背景解耦。除此之外,对于视觉测量来说,物体的二维信息往往随射影方式而变化,但其三维特征对不同测量方式具有更好的统一性。与相片不同,三维图像时对一类信息的统称,信息还需要有具体的表现形式。其表现形式包括:深度图(以灰度表达物体与相机的距离),几何模型(由CAD软件建立),点云模型(所有逆向工程设备都将物体采样成点云)。可见,点云数据是最为常见也是最基础的三维模型。点云模型往往由测量直接得到,每个点对应一个测量点,未经过其他处理手段,故包含了最大的信息量。然而,这些信息隐藏在点云中需要以其他提取手段将其萃取出来,提取点云中信息的过程则为三维图像处理。

    02
    领券