首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    知识图谱研讨实录08丨肖仰华教授带你读懂知识图谱的质量控制

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第八章课程《知识图谱的质量控制》的15条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。

    01

    专业的知识图谱应用门槛正在被不断降低

    知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。   最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。

    02

    知识图谱构建和应用实践

    知识图谱的构建流程主要分为知识抽取、知识融合、知识表示和知识优化,知识抽取主要是借助于算法层的实体抽取算法、关系抽取算法、属性抽取算法或者联合抽取算法,对标注好的语料数据进行模型训练,生成相应知识抽取组件。知识融合主要解决在知识抽取过程后的知识对齐和属性融合问题,形成一致性较好的领域知识图谱,在知识构建之后建立符号化和向量化的表述组件,满足不同的业务知识表示需求。知识优化则为了在构建的领域知识图谱进行知识质量的优化提升,挖掘领域知识图谱中隐漏的领域知识,发现知识冲突并对领域知识进行更新,从而形成了一整套的知识图谱构建组件。

    02

    《梦华录》要大结局了,看超前点映不如先来学学它!

    👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识

    01

    知识图谱研讨实录05丨肖仰华教授带你读懂概念图谱构建

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第五章课程《概念图谱构建》的16条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。 本课程

    01

    干货 | 大规模知识图谱的构建、推理及应用

    作者简介 李健,携程度假研发部研发总监,2013年底加入携程,在数据挖掘分析、人工智能方面有一定的实践与积累。 随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。 人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。 未来伴随着深度学习对于大数据的红利消耗殆尽,如果基础理论方面没有新的突破,深度学习模型效果的天花板将日益迫近。而另一方面

    011
    领券