知识图谱最早由谷歌公司在2012年提出,其使用语义检索的方法从多种语言的数据源(例如FreeBase、维基百科等)收集信息并加工,以提高搜索质量、改善搜索体验。实际上,2006年Tim Berner-Lee就提出了Linked Data也就是一种在万维网数据上创建语义关联的方法。再往前追溯,语义链网络(Semantic Link Network)已经有了比较系统的研究,旨在创立一个自组织的语义互联方法来表达知识来支持智能应用,系统性的理论和方法可以参考H. Zhuge在2004年发表的《The Knowledge Grid》一文。
知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系。其基本组成单位是“实体-关系-实体”三元组(比如人-“居住在”-北京、张三和李四是“朋友”),以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构。
人工智能(Artificial Intelligence,AI)是一种通过计算机模拟人类智能的技术,其应用范围越来越广泛。知识图谱(Knowledge Graph,KG)则是人工智能技术中的重要组成部分,它是一种结构化的、语义化的知识表示方式,能够帮助计算机理解和处理人类语言。
近两年来,随着Linking Open Data等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。 知识图谱的表示和本质 正如Google的辛格博士在介绍知识图谱时提
知识图谱技术原理介绍(转载) 王昊奋 近两年来,随着LinkingOpen Data 等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(DocumentWeb)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(DataWeb)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为KnowledgeGraph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。下面我将从以下几个方面来介绍知识
知识图谱(Knowledge Graph)的概念由谷歌2012年正式提出,旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。目前,随着智能信息服务应用的不断发展,知识图谱已被广泛应用于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。本篇是『知识图谱构建与落地实践』的起始篇,我们与来自百度的NLP工程师路遥,一起研究知识图谱的构建流程与技术细节。
云栖君导读:知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。
知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第八章课程《知识图谱的质量控制》的15条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。
知识图谱能够让机器去理解和认知世界中的事物和现象,并解释现象出现的原因,推理出隐藏在数据之间深层的、隐含的关系,使得知识图谱技术从最初谷歌用来提升搜索引擎的结果来增强用户体验,到现在已经被金融、公安、能源、教育、医疗等领域众多行业进行大量运用。
磐创AI 专注分享原创AI技术文章 作者 | Walker 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】:本文是知识图谱的一篇综述类文章,带你对知识图谱有一个大体的了解。欢迎大家点击上方蓝字关注我们的公众号:磐创AI。 信息技术的发展不断推动着互联网技术的变革,Web技术作为互联网时的标志性技术,正处于这场技术变的核心。从网页的链接到数据的链接,Web技术正在逐步朝向Web之父Berners-Lee设想中的语义网络演变。语义网络是一张数据构成的网络,语义网络技术向用户提供的是一个查询环境,
知识图谱技术是人工智能技术的重要组成部分,其建立的具有语义处理能力与开放互联能力的知识库,可在智能搜索、智能问答、个性化推荐等智能信息服务中产生应用价值。
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法。本文研究的是爱奇艺奇搜知识图谱的构建流程与应用场景,了解这一文娱行业知识图谱是如何帮助用户精确找到想要的内容、回答用户问题、以及理解用户搜索意图的。
知识图谱是以图结构描述的知识。与传统数据库相比,知识图谱在存储、查询、检索方面具有诸多优势。传统数据库对数据的组织是以字段为单位,而知识图谱通过关系、属性和实体等数据类型,将数据组织成复杂的图,使其更容易理解。
《解开知识图谱神秘的面纱》这篇介绍了知识图谱的基本概念、应用知识图谱的三个层面,本文主要介绍知识图谱建设的方法论。
知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。 最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。
主讲嘉宾:王昊奋 主持人:阮彤 承办:中关村大数据产业联盟 嘉宾简介: 王昊奋,华东理工大学讲师,上海交通大学计算机应用专业博士,对语义搜索、图数据库以及Web挖掘与信息抽取有浓厚的兴趣。在博士就读期间发表了30余篇国际顶级会议和期刊论文,长期在WWW、ISWC等顶级会议担任程序委员会委员。作为Apex数据与知识管理实验室语义组负责人,他主持并参与了多项相关项目的研发,长期与IBM、百度等知名IT企业进行合作,在知识图谱相关的研究领域积累了丰富的经验。 以下为分享实景全文: 王昊奋: 近两年来,随着开放链
AI核心要研究的是如何让计算机去完成以往需要人的智力才能胜任的工作,而人的智能性核心体现在对不同事物的感知能力、推理能力、决策能力。因此要想做出AI产品就离不开对感知的研究,推理机制的研究以及智能决策方向的研究。对感知智能而言,AI已经做了很多突破,例如机器对听觉、视觉、触觉的感知能力,通过摄像头、麦克风或者其他的传感设备,借助语音识别、图像识别的一些算法模型,能够进行识别和理解。
2012年5月17日,Google正式提出了知识图谱(Knowledge Graph)的概念,其初衷是为了优化搜索引擎返回的结果,增强用户搜索质量及体验。
本文首先介绍了什么是旅游知识图谱,然后就旅游知识图谱的架构,构建,应用和未来几个方面展开讨论。
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
知识图谱的构建流程主要分为知识抽取、知识融合、知识表示和知识优化,知识抽取主要是借助于算法层的实体抽取算法、关系抽取算法、属性抽取算法或者联合抽取算法,对标注好的语料数据进行模型训练,生成相应知识抽取组件。知识融合主要解决在知识抽取过程后的知识对齐和属性融合问题,形成一致性较好的领域知识图谱,在知识构建之后建立符号化和向量化的表述组件,满足不同的业务知识表示需求。知识优化则为了在构建的领域知识图谱进行知识质量的优化提升,挖掘领域知识图谱中隐漏的领域知识,发现知识冲突并对领域知识进行更新,从而形成了一整套的知识图谱构建组件。
在当今信息时代,数据已经成为企业决策和业务发展的重要驱动力。然而,随着数据量的不断增加,传统的数据处理方法已经难以满足需求。知识图谱作为一种新兴的技术,正逐渐成为处理大规模数据的关键工具。本文将深入探讨知识图谱的数据处理流程,以及图数据库在这一领域的重要作用。
本文主要分享 OPPO 知识图谱建设过程中算法相关的技术挑战和对应的解决方案,主要包括实体分类、实体对齐、信息抽取、实体链接和图谱问答 query 解析等相关算法内容。
本课程从知识图谱的历史由来开展,讲述知识图谱与人工智能的关系与现状;知识图谱辐射至各行业领域的应用;在知识图谱关键技术概念与工具的实践应用中,本课程也会讲解知识图谱的构建经验;以及达观在各行业领域系统中的产品开发和系统应用。
纯KG技术领域分享:解密知识谱的通用可迁移构建方法,以阿里巴巴大规模知识图谱核心技术为介绍。
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
互联网时代,人类在与自然和社会的交互中生产了异常庞大的数据,这些数据中包含了大量描述自然界和人类社会客观规律有用信息。如何将这些信息有效组织起来,进行结构化的存储,就是知识图谱的内容。
随着信息的爆炸性增长,构建能够理解、推理和应用知识的系统变得愈发重要。知识图谱作为一种结构化的知识表示方式,与自然语言处理(NLP)的结合将为构建更智能的系统打开崭新的可能性。本文将深入研究NLP在知识图谱中的应用,从基础概念到实际应用,揭示这一领域的发展趋势和潜在挑战。
人工智能从感知阶段逐步进入认知智能的过程中,知识图谱技术将为机器提供认知思维能力和关联分析能力,可以应用于机器人问答系统、内容推荐等系统中。
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建 、绘制和显示知识及它们之间的相互联系。知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域 以及整体知识架构达到多学科融合目的的现代理论。知识图谱,它能为学科研究提供切实的、有价值的参考。
鞠建勋,携程度假AI研发团队资深算法工程师,主要负责携程度假自然语言处理相关的AI项目。硕士毕业于南京大学,有五年的自然语言处理经验,专注于自然语言处理和知识图谱方面的应用和算法研发。
个人入门知识图谱过程中的学习笔记,算是半教程类的,指引初学者对知识图谱的各个任务有一个初步的认识。目前暂无新增计划。
2016年7月,哈工大社会计算与信息检索研究中心(HIT-SCIR)开始启动事理图谱的研究工作。
导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。 本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。 对于读者,我们不要求有任何AI相关的背景知识。
在人工智能和大数据时代,知识图谱作为连接广泛领域知识的桥梁,已经成为信息组织和智能检索的关键技术。知识图谱通过将现实世界中的实体及其相互关系以图形的形式进行结构化表示,不仅为机器提供了理解世界的方式,也极大地丰富了人机交互的可能性。随着知识图谱应用的不断深入,其在搜索引擎、推荐系统、语义搜索、智能问答等领域发挥着越来越重要的作用。
【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。主要基于的参考文献来自[22]和[40], 本人(Quan)做了部分修整。 引言 随着互联网的发展,网络数据内容呈现爆炸式增长的态势。由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了
导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。
如果我们从不同的研究视角、研究目的以及多知识的不同认识程度对知识进行分类的话,可以分为以下几种:
人工智能的发展,在过去几十年起起落落。在算力和数据不是瓶颈的今天,基于深度学习的信号处理、语音识别、机器视觉等感知智能成为当前 AI 的主流路线。
摘要:多模态知识图谱(multi-modal knowledge graph,MMKG)是近几年新兴的人工智能领域研究热点。本文提供了一种多模态领域知识图谱的构建方法,以解决计算机学科领域知识体系庞大分散的问题。首先,通过爬取计算机学科的相关多模态数据,构建了一个系统化的多模态知识图谱。但构建多模态知识图谱需要耗费大量的人力物力,本文训练了基于LEBERT模型和关系抽取规则的实体-关系联合抽取模型,最终实现了一个能够自动抽取关系三元组的多模态计算机学科领域知识图谱。
知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织新KG视点系列文章——“大模型专辑”,不定期邀请业内专家对知识图谱与大模型的融合之道展开深入探讨。本期邀请到蚂蚁集团知识引擎负责人梁磊分享“SPG与LLM双向驱动的关键问题和应用探索”,本文整理自梁磊老师在2023年10月26日沈阳举办的CNCC知识图谱论坛上的分享。
知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第五章课程《概念图谱构建》的16条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。 本课程
作者简介 李健,携程度假研发部研发总监,2013年底加入携程,在数据挖掘分析、人工智能方面有一定的实践与积累。 随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。 人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。 未来伴随着深度学习对于大数据的红利消耗殆尽,如果基础理论方面没有新的突破,深度学习模型效果的天花板将日益迫近。而另一方面
随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。
作者:郑孙聪,腾讯 TEG 应用研究员 Topbase 是由 TEG-AI 平台部构建并维护的一个专注于通用领域知识图谱,其涉及 226 种概念类型,共计 1 亿多实体,三元组数量达 22 亿。在技术上,Topbase 支持图谱的自动构建和数据的及时更新入库。此外,Topbase 还连续两次获得过知识图谱领域顶级赛事 KBP 的大奖。目前,Topbase 主要应用在微信搜一搜,信息流推荐以及智能问答产品。本文主要梳理 Topbase 构建过程中的技术经验,从 0 到 1 的介绍了构建过程中的重难点问
领取专属 10元无门槛券
手把手带您无忧上云