首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

矩阵乘以始终相同的向量的列表

在数学中,矩阵乘以向量的操作可以表示为 ( A \mathbf{v} ),其中 ( A ) 是一个矩阵,( \mathbf{v} ) 是一个向量。如果有一个列表(或集合)包含多个相同的向量 (\mathbf{v}),那么矩阵乘以这个列表中的每一个向量将得到相同的结果。

具体来说,假设有一个矩阵 ( A ) 和一个向量 (\mathbf{v}),并且有一个列表 ({\mathbf{v}, \mathbf{v}, \mathbf{v}, \ldots, \mathbf{v}}) 包含 ( n ) 个相同的向量 (\mathbf{v})。那么矩阵乘以这个列表中的每一个向量的结果将是相同的。

例如,假设矩阵 ( A ) 和向量 (\mathbf{v}) 如下:

[ A = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 5 \ 6 \end{pmatrix} ]

矩阵 ( A ) 乘以向量 (\mathbf{v}) 的结果是:

[ A \mathbf{v} = \begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \ 6 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 6 \ 3 \cdot 5 + 4 \cdot 6 \end{pmatrix} = \begin{pmatrix} 17 \ 39 \end{pmatrix} ]

如果列表包含 ( n ) 个相同的向量 (\mathbf{v}),那么矩阵乘以这个列表中的每一个向量的结果将是:

[ A \mathbf{v}, A \mathbf{v}, A \mathbf{v}, \ldots, A \mathbf{v} ]

即每个结果都是:

[ \begin{pmatrix} 17 \ 39 \end{pmatrix} ]

总结来说,矩阵乘以始终相同的向量的列表将得到相同的结果列表。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

矩阵向量范数

L1L_1L1​ norm 在某些机器学习应用中,区分恰好是零元素和非零但值很小元素是很重要。在这些情况下,我们转而使用在各个位置斜率相同,同时保持简单数学形式函数:L1L_1L1​ 范数。...每当x 中某个元素从0 增加ϵ,对应L1L_1L1​范数也会增加ϵ。 L0L_0L0​ norm 有时候我们会统计向量中非零元素个数来衡量向量大小。...有些作者将这种函数称为“L0L_0L0​ 范数’’,但是这个术语在数学意义上是不对向量非零元素数目不是范数,因为对向量缩放 倍不会改变该向量非零元素数目。...这个范数表示向量中具有最大幅值元素绝对值: ∣∣x∞∣∣=maxi∣xi∣||x_{\infty}||=max_i|x_i|∣∣x∞​∣∣=maxi​∣xi​∣ Frobenius norm 有时候我们可能也希望衡量矩阵大小...∣F​=i,j∑​Ai,j2​​ 其类似于向量L2L_2L2​范数。

77310

社交网络分析 R 基础:(三)向量矩阵列表

在第二章介绍了 R 语言中基本数据类型,本章会将其组装起来,构成特殊数据结构,即向量矩阵列表。...向量 向量创建 向量元素访问 向量运算 向量其他常用操作 矩阵 矩阵创建 矩阵元素访问 矩阵运算 矩阵特征值与特征向量 列表 列表创建 列表元素访问 向量 向量创建 向量(vector...数学函数和统计函数在矩阵用法与在向量用法相同。...列表 列表创建 列表(list)在 R 语言中是由一个个对象所构成集合,这些对象可以是不同数据类型,比如数值、字符串、向量矩阵等等。...将其输入到 R 终端中,细心你会发现这与矩阵计算特征值和特征向量函数 eigen() 返回类型一致。这种定义了名称列表对于包含多个返回值函数非常方便。

2.8K20
  • 矩阵向量区别

    一直没有对向量组做一个总结 矩阵矩阵是一个由 m × n 个数按矩形排列成数组,其中 m 表示行数,n 表示列数。矩阵元素可以是数字、符号或其他数学对象。...向量组: 向量组是由一组具有相同维数向量构成集合。每个向量可以看作是一个特殊矩阵,即只有一列矩阵向量组通常用小写字母加下标表示,例如 a1, a2, a3。...向量组表示空间中多个方向,可以用来表示空间中点、线、面等。向量组之间可以进行线性组合,即用系数乘以向量后相加。...就是这样 矩阵向量矩阵每一列都可以看作是一个向量,因此,矩阵可以看作是一个由列向量组成向量组。 向量组对应矩阵: 将向量每个向量作为矩阵一列,就可以得到一个矩阵。...向量可以看作是一特殊矩阵,只有一列。 向量组张成空间就是一个线性空间。 矩阵秩等于其列向量组中线性无关向量个数。

    6810

    机器学习中矩阵向量求导(五) 矩阵矩阵求导

    矩阵向量求导前4篇文章中,我们主要讨论了标量对向量矩阵求导,以及向量向量求导。...本文我们就讨论下之前没有涉及到矩阵矩阵求导,还有矩阵向量向量矩阵求导这几种形式求导方法。     ...目前主流矩阵矩阵求导定义是对矩阵先做向量化,然后再使用向量向量求导。而这里向量化一般是使用列向量化。...矩阵矩阵求导微分法,也有一些法则可以直接使用。主要集中在矩阵向量化后运算法则,以及向量化和克罗内克积之间关系。...如果遇到矩阵矩阵求导不好绕过,一般可以使用机器学习中矩阵向量求导(四) 矩阵向量求导链式法则中第三节最后几个链式法则公式来避免。

    2.9K30

    「Python」矩阵向量循环遍历

    Out[3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 那么在Pandas操作中,有没有类似的功能可以实现对矩阵或者向量进行操作呢?...当时是有的,这篇笔记来汇总下自己了解几种方法。 apply() 在Pandas中,无论是矩阵(DataFrame)或者是向量(Series)对象都是有apply()方法。...对DataFrame对象使用该方法的话就是对矩阵每一行或者每一列进行遍历操作(通过axis参数来确定是行遍历还是列遍历);对Series对象使用该方法的话,就是对Series中每一个元素进行循环遍历操作...除了对矩阵使用apply()方法进行迭代外,还可以.iteritems()、.iterrows()与.itertuples()方法进行行、列迭代,以便进行更复杂操作。....Series是一个向量,但是其中元素却是一个个数值,如何将两个Series像两个数值元素一样进行使用?

    1.4K10

    机器学习中矩阵向量求导(二) 矩阵向量求导之定义法

    在机器学习中矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导9种定义与求导布局概念。...今天我们就讨论下其中标量对向量求导,标量对矩阵求导, 以及向量向量求导这三种场景基本求解思路。     对于本文中标量对向量矩阵求导这两种情况,如前文所说,以分母布局为默认布局。...首先我们想到是基于矩阵求导定义来做,由于所谓标量对向量求导,其实就是标量对向量每个分量分别求导,最后把求导结果排列在一起,按一个向量表示而已。...用定义法求解标量对矩阵求导      现在我们来看看定义法如何解决标量对矩阵求导问题。其实思路和第一节标量对向量求导是类似的,只是最后结果是一个和自变量同型矩阵。     ...定义法矩阵向量求导局限     使用定义法虽然已经求出一些简单向量矩阵求导结果,但是对于复杂求导式子,则中间运算会很复杂,同时求导出结果排列也是很头痛

    1K20

    机器学习中矩阵向量求导(三) 矩阵向量求导之微分法

    在机器学习中矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导方法,但是这个方法对于比较复杂求导式子,中间运算会很复杂,同时排列求导出结果也很麻烦。...因此我们需要其他一些求导方法。本文我们讨论使用微分法来求解标量对向量求导,以及标量对矩阵求导。     本文标量对向量求导,以及标量对矩阵求导使用分母布局。...使用微分法求解矩阵向量求导     由于第一节我们已经得到了矩阵微分和导数关系,现在我们就来使用微分法求解矩阵向量求导。     ...迹函数对向量矩阵求导     由于微分法使用了迹函数技巧,那么迹函数对对向量矩阵求导这一大类问题,使用微分法是最简单直接。...微分法求导小结     使用矩阵微分,可以在不对向量矩阵某一元素单独求导再拼接,因此会比较方便,当然熟练使用前提是对上面矩阵微分性质,以及迹函数性质熟练运用。

    1.6K20

    窥探向量矩阵存内计算原理—基于向量矩阵存内计算

    原文:窥探向量矩阵存内计算原理—基于向量矩阵存内计算-CSDN博客CSDN-一见已难忘在当今计算领域中,存内计算技术凭借其出色向量矩阵操作效能引起了广泛关注。...窥探向量矩阵存内计算原理生动地展示了基于向量矩阵存内计算最基本单元。这一单元通过基尔霍夫定律,在仅一个读操作延迟内完整执行一次向量矩阵操作。...基于基尔霍夫定律,比特线上输出电流便是向量矩阵操作结果。将这一操作扩展,将矩阵存储在ReRAM阵列中,通过比特线输出相应结果向量。探寻代表性工作独特之处 1....DPE (Hewlett Packard Laboratories) DPE是专为向量矩阵操作设计存内计算加速器。...ISAAC通过ReRAM阵列实现向量矩阵操作,采用流水线方式提高推理效率,为神经网络推理提供了独特而高效解决方案。 3.

    19120

    向量范数和矩阵范数_矩阵范数与向量范数相容是什么意思

    1} yn×1​=An×m​xm×1​,这里矩阵角色就好比函数中函数体 f ( x ) f(x) f(x) 研究矩阵性质有助于我们理解这个矩阵是如何作用于输入,从而揭露了从输入到输出之间规律...比如: 矩阵秩反映了映射目标向量空间维数,比如对于变换 y = A x y=Ax y=Ax,如果 A A A秩分别1,2,3,那么表示新向量 y y y维数分别是1,2,3,所以秩其实就是描述了这个变换矩阵会不会将输入向量空间降维...可逆矩阵反映了线性映射可逆性,假如 A A A是可逆,那么对于变换 y = A x y=Ax y=Ax,就有 x = A − 1 y x=A^{-1}y x=A−1y 矩阵范数则反映了线性映射把一个向量映射为另一个向量...,向量“长度”缩放比例,或者可以理解为矩阵范数就是一种用来刻画变换强度大小度量。...矩阵范数 常用矩阵范数: F-范数:Frobenius范数,即矩阵元素绝对值平方和再开方,对应向量2范数, ∥ A ∥ F = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2

    85410

    基本操作包移动向量矩阵数组数据框列表因子NA字符串

    c("one","two","three","four")#字符型向量加引号 z<-c(TRUE,T,T,F,F) mode(x)#查看向量x类型 3.1.向量索引 3.1.1 数值型向量 x<-(1,2,3,4,5...) x[1]#取向量x当中第1个元素 x[-1]#取向量x当中除了第1个以外其它元素 x[c(1,3,5)]#取第1,3,5个元素 x[c(T,F)]#>1,3,5 循环补充 x[x>3]#从向量x中取出大于...和2 x[1]<-3#把向量x中第1个数改为3 四.矩阵矩阵四则运算需要行列一致) 4.1创建矩阵 m <- matrix(1:20,4,5) # 4行5列,按列填充,遵循循环补齐原则 m <-...m+1#矩阵m中每一个元素都加1 colSums(m)#每一列总和 rowSums(m) colMeans(m) rowMeans(m) 4.5 矩阵函数 diag(m)#取对角线上数字(该函数要求矩阵行和列相同...,ya=c,la=d) 7.2 列表索引 mlist[1]#输出列表子集,结果仍是列表 mlist[[1]]#输出为元素本身数据类型 mlist[c(1,4)] mlist["ni"] mlist

    17930

    深度学习JavaScript基础:矩阵向量表示

    最近在读一本《基于浏览器深度学习》,书比较薄,但是涉及内容很多,因此在读过程中不得不再查阅一些资料,以加深理解。我目前从事本职工作就是浏览器研发,对于前端技术并不陌生。...在深度学习中,矩阵向量是最基本数据结构,而高效矩阵向量运算是深度学习计算中关键。在C++中,数组可用于表示矩阵向量,JS中也有这样数据结构吗?...通过 ShareArrayBuffer,web worker、不同线程可以在相同内存块中读写数据。这也意味着你不再需要通过 postMessage 来在不同线程中通信传递数据。...to worker */ w.postMessage(buff); /* changing the data */ arr[0] = 1; 小结 本文总结了在JavaScript如何表达深度学习中非常要矩阵向量...,借助于TypedArray和ArrayBuffer,在JS中,我们也可以高效处理矩阵数据,为JS中深度学习提供了坚实基础。

    2.3K20

    深入理解向量进行矩阵变换本质

    向量理解 上图表述是平面上一点,在以i和j为基坐标系里几何表示,这个点可以看作(x,y)也可以看作是向量ox与向量oy和。 矩阵: 就是长这个样子: ?...矩阵 矩阵向量乘法: ? 矩阵*向量 下面进入正题: 前面说过,某个向量可以看成一些标量倍向量和。...比如,上面提到那个向量,则是x倍i向量+y倍j向量,即xi+yj 那我们上面矩阵运算结果则可以看成是ax+by+cx+dy 我们简单处理一下,则会得到(a+c)x +(b+d)y,是不是看上去就是这个矩阵对原始...其实可以理解为他是一个新基,为什么这么说呢,我们把刚才丢掉两个数放里面就比较好理解了,如果i和j是老基单位向量的话,那这个点向量应该是(xi+yj)吧,上面其实说过了 ?...,它一直都是(x,y)从来没有动过,动只是基变了而已 所以: 综上我们得到结论是: 向量矩阵变换,就是将空间上点进行对应移动 亦或是点没有动,只是给这个点换了一个新基而已 再总结一点直接上图

    1.7K40

    Fortran如何实现矩阵向量乘法运算

    矩阵是二维数组,而向量是一维数组,内置函数matmul不能实现矩阵向量乘法运算。在这一点Fortran不如matlab灵活。 Fortran如何实现矩阵向量乘法运算,现有以下三种方法供参考。...数组c第一列就是需要计算结果。 spread(B,2,2)就是按列扩展,成为二维数组 ? 三)利用dot_product函数。...dot_product函数是向量点积运算函数,可将二维数组每一行抽取出来,和一维数组作dot_product运算。 ? 程序员为什么会重复造轮子?...现在软件发展趋势,越来越多基础服务能够“开箱即用”、“拿来用就好”,越来越多新软件可以通过组合已有类库、服务以搭积木方式完成。...对程序员来讲,在一开始学习成长阶段,造轮子则具有特殊学习意义,学习别人怎么造,了解内部机理,自己造造看,这是非常好锻炼。每次学习新技术都可以用这种方式来练习。

    9.8K30

    Python元组与列表相同点与区别

    列表和元组都属于有序序列,支持使用双向索引访问其中元素、使用内置函数len()统计元素个数、使用运算符in测试是否包含某个元素、使用count()方法统计指定元素出现次数和index()方法获取指定元素索引...虽然有着一定相似之处,但列表和元组在本质上和内部实现上都有着很大不同。 元组属于不可变(immutable)序列,一旦创建,不允许修改元组中元素值,也无法为元组增加或删除元素。...从一定程度上讲,可以认为元组是轻量级列表,或者“常量列表”。 Python内部实现对元组做了大量优化,访问速度比列表更快。...如果定义了一系列常量值,主要用途仅是对它们进行遍历或其他类似用途,而不需要对其元素进行任何修改,那么一般建议使用元组而不用列表。...最后,作为不可变序列,与整数、字符串一样,元组可用作字典键,也可以作为集合元素,而列表则永远都不能当做字典键使用,也不能作为集合中元素,因为列表不是不可变,或者说不可哈希。

    1.7K60
    领券