https://github.com/AndroidDeveloperLB/AndroidJniBitmapOperations
MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')
命令1 interp1 功能 一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,’extrap’) 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1
OpenGL ES 3.0的顶点着色器和片段着色器第一行总是声明着色器版本。 # version 300 es 没有声明版本的表示用的 OpenGL ES着色语言的1.0版本,对应OpenGL ES 2.0。
拟合:已知有限个数据点,求近似函数,可不过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
(1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。
对二元函数数据进行插值,得到指定自变量值对应插值函数值。其中样本点数据为 meshgrid 格式。 【注】meshgrid 格式为一种完整网格格式(可使用 meshgrid 函数创建),即元素表示矩阵区域内的网格点。一个矩阵包含 x 坐标,另一个矩阵包含 y 坐标。x 矩阵中的值沿行方向严格单调递增,沿列方向为常量;y 矩阵则相反。
径向(Radial Direction)是指沿半径的直线方向,或垂直于轴的直线方向1。径向基函数(Radial Basis Function,RBF)是一个取值仅依赖于到原点距离的实值函数2。在机器学习中,RBF 常被用作支持向量机的核函数。而我们在这里主要讨论 RBF 应用于插值的情况。
OpenCV在3.1.0版本中的图像放缩与旋转操作比起之前版本中更加的简洁方便,同时还提供多种插值方法可供选择。首先来看图像放缩,通过OpenCV核心模块API函数resize即可实现图像的放大与缩小。 一:图像放缩(zoom in/out) 函数resize相关API参数介绍 -src表示输入图像,类型一般是Mat类型 -dst表示输出图像,类型一般是Mat类型 -dsize表示输出图像大小,如果是零的话表示从fx与fy两个参数计算得到 dsize= Size(round(src.cols*fx), r
因为近期换了博客主题,对Latex的支持较弱,而且以后可能会很少写和数学有关的内容,所以下线了之前数学专题下的所有文章,但竟然有网友评论希望重新上线,我还以为那些东西没人看呢(⊙o⊙),最近抽空整理成pdf,需要的下载吧
《Android开发艺术探索》读书笔记 (7) 第7章 Android动画深入分析
本文会用容易理解的话解释下griddata和griddatan的用法,不会追求严谨,目的是帮助需要用到这两个插值函数的尽快理解使用。
十七、拟合(回归)与内插 17.1 polyfit() 假设当前有一组身高数据,与其对应的有一组体重数据,我们要分析两者之间是否有某种关联,这时就需要用到曲线拟合函数polyfit,其调用格式
OpenCV提供了warpAffine函数实现图片仿射变换功能,我们可以利用这个函数实现图像旋转,函数原型为:
该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。
内容包括:基本幂法,逆幂法和移位幂法,QR分解,Householder变换,实用QR分解技术,奇异值分解SVD
今天通过几个实例对matlab中的interp1插值函数进行了深入的理解,下面通过几组数据进行说明。
数学上定义:线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为0; 在图片上,我们利用线性插值的算法,可以减少图片的锯齿,模糊图片;
csape只是Cubic spline插值,interp1可以选择几种不同的插值方法。
参考: https://blog.csdn.net/huang1024rui/article/details/46545329 数字图像处理
样条梁单元是样条函数与有限元法相结合的产物。有限元法将结构分割成若干单元,位移场采用分段插值或者分区插值。常用的插值方法有Lagrange插值,Hermite插值和样条插值等形式。经典梁单元就是采用的Hermite插值形式。与其他插值形式相比,样条插值具有待定系数少,连续性强,精度高等优点。下面来推导采用二次样条函数作为位移插值函数的梁单元刚度矩阵,并将计算结果与经典梁单元对比。 关于样条函数的性质,可参考有关文献资料。为方便起见,推导经典梁单元刚度矩阵需要使用自然坐标系和物理坐标系。由于有4个位移节点条件
看了好几篇关于双线性插值算法的博文,解释得都不好理解,不过下面这篇博文就解释得很好,以下内容均参考这篇:
在CNN中,转置卷积是一种上采样(up-sampling)的常见方法.如果你不清楚转置卷积是怎么操作的,那么就来读读这篇文章吧.
越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是 0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source): 234 38 22 67 44 12 89 65 63
(1)首先理解meshgrid的原理和用法。简单地说,就是产生Oxy平面的网格坐标。
关键点是由DOG空间的局部极值点组成的,关键点的初步探查是通过同一组内各DoG相邻两层图像之间比较完成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图下图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。
大家好,又见面了,我是你们的朋友全栈君。 1、原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛。 越是简单的模型越适合用来举例子,我们就举个简单的图像:33 的256级灰度图。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source): 234 38 22 67 44 12 89 65 63 这 个矩阵中,元素坐标
传统的GPU渲染流水线(管线)是基于光栅化的一套流程,之所以要强调传统,是为了将之区别于基于光线追踪(ray trace)的流水线和基于体素化的流水线。在光栅管线中,最基本的2个着色器是顶点着色器和像素着色器,在下图中,除了2个着色器可编程,中间三个时钟节点都是固定的,只能配置不可编程。
该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列。该系列引用了《Android开发艺术探索》以及《深入理解Android 卷Ⅰ,Ⅱ,Ⅲ》中的相关知识,另外也借鉴了其他的优质博客,在此向各位大神表示感谢,膜拜!!!
SciPy的interpolate模块提供了许多对数据进行插值运算的函数,范围涵盖简单的一维插值到复杂多维插值求解。
Tissot 指示图或 Tissot 歪曲椭圆是在地图上显示圆,展示了这些圆是如何适应投影的(即,在不同的位置出现了球面相同的曲率)。通常,不同的位置会出现不同的扭曲度。
样条梁单元是样条函数与有限元法相结合的产物。有限元法将结构分割成若干单元,位移场采用分段插值或者分区插值。常用的插值方法有Lagrange插值,Hermite插值和样条插值等形式。将梁的曲率(横向位移的二阶导数)作为节点自由度,构造三次样条梁单元,其精度较二次样条梁单元更高。下面来推导采用二次样条函数作为位移插值函数的梁单元刚度矩阵。 参照二次样条梁单元刚度矩阵推导方法,同样使用自然坐标系和物理坐标系。由于有6个位移节点条件,可假设梁单元的位移场挠度为具有12个待定系数的函数模式,其中 C1, C2, C3
1、MATLAB中图象数据的读取 A、 imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可
初学图像处理,很多人遇到的第一关就是图像旋转,图像旋转是图像几何变换中最具代表性的操作,包含了插值、背景处理、三角函数等相关知识,一个变换矩阵跟计算图像旋转之后的大小公式就让很多开发者最后直接调用函数了事,但是其实这个东西并没有这么难懂,可以说主要是之前别人写的公式太吓人,小编很久以前第一次接触的也是被吓晕了!所以决定从程序员可以接受的角度从新介绍一下图像旋转基本原理与OpenCV中图像旋转函数操作的基本技巧。
图像几何变换又称为图像空间变换,它将一副图像中的坐标位置映射到另一幅图像中的新坐标位置。我们学习几何变换就是确定这种空间映射关系,以及映射过程中的变化参数。图像的几何变换改变了像素的空间位置,建立一种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下面两种计算:
[[1, 0, 100], [0, 1, 200]] 转变为2个矩阵: [[1, 0], [0, 1]] 和 [[100], [200]] 分别对应A和B矩阵,原图像为C[x, y] A * C + B = [[1x+0y], [0x+1y]] + [[100], [200]]
SciPy(Scientific Python)是一个开源的Python科学计算库,用于解决科学与工程领域的各种数值计算问题。它建立在NumPy库的基础之上,并额外提供其他更高级的功能与工具,涵盖了许多科学分析领域——包括数值积分、优化、插值、信号和图像处理、线性代数、统计分析等。其中,SciPy常用的一些功能如下所示。
在Python科学计算领域,SciPy是一个非常重要的库。它提供了许多用于数值计算、优化、积分、统计和许多其他科学计算任务的功能。SciPy构建在NumPy之上,为数学、科学和工程领域的广泛问题提供了高效的解决方案。本教程将介绍SciPy的主要功能和用法,并提供一些示例以帮助您快速入门。
本文翻译自《Up-sampling with Transposed Convolution》,这篇文章对转置卷积和反卷积有着很好的解释,这里将其翻译为中文,以飨国人。如有谬误,请联系指正。转载请注明出处。
机械臂轨迹规划是根据机械臂末端执行器的操作任务,在其初始位置、中间路径点和终止位置之间,采用多项式函数来逼近给定路径,它是机器人学的一个重要的研究内容。关于机械臂的轨迹规划可以分为关节空间的轨迹规划和操作空间轨迹规划。在操作空间的轨迹规划概念直观,但是需要进行大量的矩阵计算,并且操作空间的参数很难通过传感器直接获得,很难用于实时控制。在关节空间的轨迹规划能够根据设计要求适时调整机械臂各关节位置、角速度和角加速度,能够有效避免机构奇异性和机械臂冗余问题。因此,面向关节空间的轨迹规划得到广泛的应用。
1、meshgrid:生成格点矩阵,类似于给定坐标空间 [x,y]=meshgrid(1:10); 2、interp插值法 插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。
Quasi-Newton Method (拟牛顿法)。在介绍无约束优化问题之前,我们首先会从直观上引入无约束优化的概念,并在此基础上引入解这类问题的两个重要概念:步长和方向。由步长的选择引入重要概念 line search,由方向的选择引入重要概念 Quasi-Newton Method。因此本篇介绍文档主要分为以下几个部分:无约束优化问题引入,Line Search,Quasi-Newton Method 和算法总结。
非关键字参数有src, M, dsize,分别表示源图像,变换矩阵,变换后的图像的长宽
尽管四元数早在1843年就由William Rowan Hamilton爵士发明,作为复数的扩展,但直到1985年Shoemake[1633]才将它们引入计算机图形领域
这一章介绍了曲线的表示, 用到了比较多的数学. 前半部分主要是介绍了曲线的性质和表示方式, 并介绍了多项式插值曲线, 后半部分主要介绍了包括贝塞尔曲线和B样条曲线在内的拟合曲线. 样条曲线的内容在样条曲线曲面有过一些简单的介绍, 这一章没有介绍曲面部分, 但是在曲线部分则进行了更加详细的介绍, 我也对这部分有了更好的理解.
仿射变换其实包含了一系列的操作:平移,缩放,旋转等,不过所有的操作都可以通过这个仿射变换矩阵来实现。
读TensorFlow相关代码看到了STN的应用,搜索以后发现可替代池化,增强网络对图像变换(旋转、缩放、偏移等)的抗干扰能力,简单说就是提高卷积神经网络的空间不变性。
作者 | 大饼博士X 本文具体介绍Google DeepMind在15年提出的Spatial Transformer Networks,相当于在传统的一层Convolution中间,装了一个“插件”,可以使得传统的卷积带有了[裁剪]、[平移]、[缩放]、[旋转]等特性。 理论上,作者希望可以减少CNN的训练数据量,以及减少做data argument,让CNN自己学会数据的形状变换。相信这篇论文会启发很多新的改进,也就是对卷积结构作出更多变化,还是比较有创意的。 背景知识:仿射变换、双线性插值 在理解
本系列博客为《游戏引擎架构》一书的阅读笔记,旨在精炼相关内容知识点,记录笔记,以及根据目前(2022年)的行业技术制作相关补充总结。 本书籍无硬性阅读门槛,但推荐拥有一定线性代数,高等数学以及编程基础,最好为制作过完整的小型游戏demo再来阅读。 本系列博客会记录知识点在书中出现的具体位置。并约定(Pa b),其中a为书籍中的页数,b为从上往下数的段落号,如有lastb字样则为从下往上数第b段。 本系列博客会约定用【】来区别本人所书写的与书中观点不一致或者未提及的观点,该部分观点受限于个人以及当前时代的视角
领取专属 10元无门槛券
手把手带您无忧上云