懒人阅读:线性代数是机器学习/深度学习的基石,绝对绕不开。深度学习本质上是通过数据映射规律,映射的过程就是数据在“空间”中的变换,变换遵循的基本法则就是线性代数所描述的内容。因此,线代之于深学,就像加减乘数之于几何(不一定恰当)。
刚体,顾名思义,是指本身不会在运动过程中产生形变的物体,如相机的运动就是刚体运动,运动过程中同一个向量的长度和夹角都不会发生变化。刚体变换也称为欧式变换。
概率质量函数(Probability Mass Function)是针对离散值而言的,通常用大写字母P表示。假设某个事
来源:数学中国本文约5400字,建议阅读10+分钟向量模型是整个线性代数的核心,向量的概念、性质、关系、变换是掌握和运用线性代数的重点。 先来了解线性代数是什么东东? 在大学数学学科中,线性代数是最为抽象的一门课,从初等数学到线性代数的思维跨度比微积分和概率统计要大得多。很多人学过以后一直停留在知其然不知其所以然的阶段,若干年之后接触图形编程或机器学习等领域才发现线性代数的应用无处不在,但又苦于不能很好地理解和掌握。的确,多数人很容易理解初等数学的各种概念,函数、方程、数列一切都那么的自然,但是一进入线性代
Math.NET的目标是为提供一款自身包含清晰框架的符号运算和数学运算/科学运算,它是C#开发的开源类库。Math.NET含了一个支持线性代数的解析器,分析复杂微分,解方程等等功能。这个项目大部分采用的是MIT/X11开源软件协议,部份采用的是GPL 或 LGPL协议。 Math.NET包含下列几个模块: Math.NET Numerics 这个是Math.NET工程的数值计算部分,其目的是针对科学计算领域, 工程和日常应用,提供一些方法和算法。涵盖的领域包括特殊函数(special functions这
线性代数告诉我们,“行!按我的语法构造一个矩阵,再按矩阵乘法规则去乘你们的图像,我保证结果就是你们想要的”。
近日,有网友在知乎开帖,将自己总结的线性代数逻辑框架分享了出来,本来仅仅只是学习分享,没想到又又又把同济版线性代数拉出来鞭尸一回。
。 若记 M 为所有 3×3 矩阵构成的矩阵空间,则所有的 3×3 对称矩阵构成的矩阵空间 S 和 3×3 上三角矩阵构成的矩阵空间 U 都是 M 的子空间。
Linear Algebra review(optional)——Matrices and vectors”
机器学习和数据分析变得越来越重要,但在学习和实践过程中,常常因为不知道怎么用程序实现各种数学公式而感到苦恼,今天我们从数学公式的角度上了解下,用 python 实现的方式方法。
看起来就让人头大?你的脑海随即会浮现出两个问题:它们都是从哪儿来的?为什么需要这些运算?
首先,线性代数和微积分都是必要的,但是初学者容易割裂地看待它们以及机器学习,不清楚哪些线性代数&微积分的知识才是掌握机器学习数学推导的关键。一样,我也走过并继续在走很多弯路,就说说我的感受吧,大家一起探讨探讨。 1 理解矩阵变换 矩阵变换简单的说就是x->Ax,A矩阵把原空间上的向量x映射到了Ax的位置,看似简单实在是奥妙无穷。 1.1 A可以是由一组单位正交基组成,那么该矩阵变换就是基变换,简单理解就是旋转坐标轴的变换,PCA就是找了一组特殊位置的单位正交基,本质上就是基变换。 1.2 A可以是某些矩阵,
在之前的课程中,列举了很多的矩阵,实际上它们都来自实际问题,而不是简简单单随便想出来的,这些矩阵都可以描述实际问题的拓扑结构,我们在处理这些实际问题时需要搞清楚它们的拓扑结构。
它是机器学习的重要基础,从描述算法操作的符号到代码中算法的实现,都属于该学科的研究范围。
本篇主要介绍了机器学习与数据科学背后的数学技术十大应用之基础机器学习部分与降维部分。
马尔科夫矩阵的稳态问题就是有关特征值为 1 的对应特征向量,并且其他的特征值的绝对值都是小于 1 (可有其他特征值也为 1 的例外)。为什么呢?
线性代数与数据科学的关系就像罗宾与蝙蝠侠。这位数据科学忠实的伙伴经常会被大家所忽视,但实际上,它是数据科学主要领域--包括计算机视觉(CV)与自然语言处理(NLP)等热门领域的强力支撑。
NumPy 提供了丰富的线性代数操作功能,包括矩阵乘法、行列式计算、特征值和特征向量等。这些功能使得 NumPy 成为科学计算和数据分析领域的重要工具。在本篇博客中,我们将深入介绍 NumPy 中的线性代数操作,并通过实例演示如何应用这些功能。
项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步
线性代数是一门大学课程,但也是相当“惨烈”的一门课程。在大学期间,我对这门学科就没怎么学懂。先是挣扎于各种行列式、解方程,然后又看到奇怪的正交矩阵、酉矩阵。还没来得及消化,期末考试轰然到来,成绩自然凄凄惨惨。 后来读了更多的线性代数的内容,才发现,线性代数远不是一套奇奇怪怪的规定。它的内在逻辑很明确。只可惜大学时的教材,把最重要的一些核心概念,比如线性系统,放在了最后。总结这些惨痛的经历,再加上最近的心得,我准备写一些线性代数的相关文章。 这一系列线性代数文章有三个目的: 概念直观化 为“数据科学”系列文章
选自machinelearningmastery 作者: Jason Brownlee 机器之心编译 参与:张倩、刘晓坤 本文介绍了 10 个常见机器学习案例,这些案例需要用线性代数才能得到最好的理解。 线性代数是数学的分支学科,涉及矢量、矩阵和线性变换。 它是机器学习的重要基础,从描述算法操作的符号到代码中算法的实现,都属于该学科的研究范围。 虽然线性代数是机器学习领域不可或缺的一部分,但二者的紧密关系往往无法解释,或只能用抽象概念(如向量空间或特定矩阵运算)解释。 阅读这篇文章后,你将会了解到: 如何在
列空间和零空间我们已经在第六讲讲解过了,在这里我们还将讨论他们所在空间的维数,以及它们自身的维数和构成它们的基。
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 来自:机器之心 你的线性代数,过了没? 不论是结构力学还是人脸识别,理工类型的科研,深究之后就会发现到处都是线性代数的身影。这样一门课程,要是在大一的时候学不好,可是会要命的。 在国内上过大学的理科同学应该都见过《线性代数》(同济版),就算没有学过,也是听过它的大名。作为一名过来人,只能说,晦涩难懂,章节混杂... 即使不少 985、211 走过高考独木桥的学生,每到期末考试,也要默默祈祷不要挂科。现在想起一些内容:
机器学习算法背后的数学知识你了解吗?在构建模型的过程中,如果想超越其基准性能,那么熟悉基本细节可能会大有帮助,尤其是在想要打破 SOTA 性能时,尤其如此。
无论你是在学校、油管、B 站还是其他地方学《线性代数》,相信你对 MIT 的 Gilbert Strang 老爷子都不会陌生。
不论是结构力学还是人脸识别,理工类型的科研,深究之后就会发现到处都是线性代数的身影。这样一门课程,要是在大一的时候学不好,可是会要命的。
机器或者说计算机只理解数字,我们所有的而计算,计算机都会将这些转换成某种方式数字表示进行处理,使这些机器能够通过从数据中学习而不是像编程那样的预定义指令来解决问题。
人工智能的基础是数学,线性代数又是其中的重要部分。然而,对于数学基础不好的人来说,「线性代数」是一门非常抽象的课程。如何学习线性代数呢?这个 GitHub 项目介绍了一份入门级线性代数课程讲义,适合大学生、程序员、数据分析师、算法交易员等,使用的代码用 Python 语言写成。
【导读】近日,机器学习专业学生 Niklas Donges 撰写了一篇关于深度学习需要的数学基础相关知识。线性代数对于理解机器学习和深度学习内部原理至关重要,这篇博文主要介绍了线性代数的基本概念,包括标量、向量、矩阵、张量,以及常见的矩阵运算。本文从一个直观、相对简单的角度讲解了线性代数中的概念和基础操作,即使您没有相关的基础知识,相信也很容易理解。 编译 | 专知 参与 | Yingying 深度学习中的线性代数 学习线性代数对理解机器学习背后的理论至关重要,特别是对于深度学习。 它让您更直观地了解算法是
这一次,老爷子分享了他关于线性代数教学、学习路径的一些建议和想法。以大牛视角,带你重新梳理线性代数。
会有很多的数据冗余,并且数据量太大,系统会无法承载,数据的传输也是一个很大的问题。因此,会对图像进行压缩,常用的图像压缩技术有 JPEG,本质上就是基变换,也就是使用更好的基来重现图像。
这份笔记名为《线性代数的艺术》,是基于MIT大牛Gilbert Strang教授的《每个人的线性代数》制作的。
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。
选自Medium 作者:Niklas Donges 机器之心编译 参与:Tianci LIU、思源 线性代数的概念对于理解机器学习背后的原理非常重要,尤其是在深度学习领域中。它可以帮助我们更好地理解算法内部到底是怎么运行的,借此,我们就能够更好的做出决策。所以,如果你真的希望了解机器学习具体算法,就不可避免需要精通这些线性代数的概念。这篇文章中,我们将向你介绍一些机器学习中涉及的关键线性代数知识。 线性代数是一种连续形式的数学,被广泛应用于理工类学科中;因为它可以帮助我们对自然现象建模,然后进行高
选自Medium 作者:Niklas Donges 机器之心编译 参与:Tianci LIU、思源 线性代数的概念对于理解机器学习背后的原理非常重要,尤其是在深度学习领域中。它可以帮助我们更好地理解算
一般理工科专业在本科都要学习微积分、线性代数、概率统计三门数学课程。微积分和概率统计两门课程的用途在学习过程中立竿见影。可是线性代数有什么用,初学者常常摸不到头脑。包括我本人大一时学习高等代数时也不太感兴趣。若干年之后对数学学科有了更深的整体性认识,返回头再看线性代数的确是非常重要。相信很多理工科学生是读研甚至工作之后才意识到线性代数的重要性。
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁任何形式转载。
线性代数是数学工具 掌握它,打开数学的另一扇大门 ---- 1:声明 非原创,笔记系诞生于10年前的孟岩先生的《理解矩阵》篇。 原文链接:===> 是它,就是它,杀死它 为什么会今天被我看到,进而进行了整理。 因为,此刻,线性代数已经不再是用来应付考试的一门普通数学科目。它已经成为了阻碍继续精进的巨大“石块”,所以需要移去。问题转换成为了主动遇到的问题。 回过头可以再继续看任何一本线性代数教材:线性空间与线性变换篇。 此刻线性代数没能成为你的问题的话,看这篇笔记的收获并不会很大。 系学习编程技术的“小
导语:在经过一天之后,我们的活动人数已经达到40人了,感谢大家对小编的支持,同时在本文末附上前一天的众筹榜单。希望能跟小伙伴们度过愉快的6天! 上过 Jeremy Howard 的深度学习课程后,我意
【磐创AI导读】:本篇为机器学习与数据科学背后的线性代数知识系列的第二篇,查看上篇:线性代数在数据科学中的十个强大应用(一)。本篇主要介绍自然语言处理(NLP)中的线性代数与计算机视觉(CV)中的线性代数。涵盖主成分分析(PCA)与奇异值分解(SVD)背后的线性代数知识。相信这也是各位数据科学爱好者常用的各项技术,希望可以帮大家理清思路和对这些算法有更进一步的认识。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
选自towardsdatascience 作者:Tivadar Danka 机器之心编译 编辑:小舟、陈萍 大学时期学的数学现在可能派上用场了,机器学习背后的原理涉及许多数学知识。深入挖掘一下,你会发现,线性代数、微积分和概率论等都和机器学习背后的算法息息相关。 机器学习算法背后的数学知识你了解吗?在构建模型的过程中,如果想超越其基准性能,那么熟悉基本细节可能会大有帮助,尤其是在想要打破 SOTA 性能时,尤其如此。 机器学习背后的原理往往涉及高等数学。例如,随机梯度下降算法建立在多变量微积分和概率论的基
早在2018年和2019年,SIGAI微信公众号先后发布过“机器学习算法地图”,“深度学习算法地图”,对机器学习、深度学习的知识脉络进行了梳理与总结,帮助大家建立整体的知识结构。这两张知识结构图的纸质版发行量和电子版下载量已经超过10万,有不少高校的机器学习课程还特地讲到了这两张图。在今天这篇文章里,我们将对机器学习的数学知识进行总结,画出类似的结构图。由于数学知识体系太过庞大,因此我们分成了整体知识结构图,以及每门课的知识结构图。
大数据文摘作品,转载要求见文末 编译 | 沈爱群,徐凌霄,Aileen 在学习深度学习的课程时,数学知识十分重要,而如果要挑选其中最相关的部分,“线性代数”首当其冲。 如果你也跟本文作者一样,正在探索深度学习又困于相关数学概念,那么一定要读下去,这是一篇介绍深度学习中最常用线性代数操作的新手指南。 什么是线性代数在深度学习中,线性代数是一个非常有用的数学工具,提供同时操作多组数值的方法。它提供多种可以放置数据的结构,如向量(vectors)和矩阵(matrices, 即spreadsheets)两种结构,并
本篇主要介绍自然语言处理(NLP)中的线性代数与计算机视觉(CV)中的线性代数。涵盖主成分分析(PCA)与奇异值分解(SVD)背后的线性代数知识。相信这也是各位数据科学爱好者常用的各项技术,希望可以帮大家理清思路和对这些算法有更进一步的认识。
来源:专知本文为书籍介绍,建议阅读5分钟这是一本关于线性代数和矩阵理论的书。 这是一本关于线性代数和矩阵理论的书。虽然它是独立的,但它最适合那些已经接触过线性代数的人。我们还假设读者已经学过微积分。然而,有些可选主题需要更多的分析。我认为线性代数可能是本科数学课程中讨论的最重要的主题。这样做的部分原因是它有助于统一这么多不同的主题。线性代数在分析、应用数学甚至理论数学中都是必不可少的。这是本书的观点,而不是单纯地介绍线性代数。这就是为什么有许多应用程序,其中一些相当不寻常。这本书的特点是在书的早期对决定因
奇异值分解(SVD,singular value decomposition),也是对矩阵进行分解,但是和特征分解不同,SVD 并不要求要分解的矩阵为方阵。假设我们的矩阵
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
领取专属 10元无门槛券
手把手带您无忧上云