首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

神经网络基础 & softmax多分类

一些基础约定 我们称输入层在神经网络中是第零层。 然后剩下的层数才是神经网络的深度。参数的上标,在神经网络中若为方括号,如[1],说明这来自神经网络的第一层,或与第一层相关。...神经网络确定维度是更重要的。举个例子,第一层中有四个神经元,输入层有三个输入(一个样本的三个维度)。我们应该怎么去得到第一层的输出?...更换神经网络架构 当varience比较大的时候,即在validation data上表现不佳的时候,可以采取以下方法: 1. 使用更多数据 2. 正则化 3....softmax多分类 截止至目前,我们的任务还只停留在Logistic,二分类上。我们可以通过修改最后一个激活函数和Z[L]的shape(L是最后一层)使得分类的类别更多。具体为: 1....激活函数从sigmoid修改为softmax

64940

Softmax及两层神经网络

Softmax及两层神经网络 0.说在前面1.Softmax向量化1.1 Softmax梯度推导1.2 Softmax向量化实现2.两层神经网络2.1 反向传播推导2.2 两层神经网络实现3.作者的话...0.说在前面 今天是cs231n Assignment1的最后一块,也就是继上次的softmax及两层神经网络!...今天在学习神经网络反向传播的时候,觉得很有意思,就仔细琢磨了一下,结果很有帮助,对于矩阵的求导有了更深的认识,下面给出手推神经网络反向传播的求导以及softmax向量化推导及实现!...1.Softmax向量化 1.1 Softmax梯度推导 首先来给出Loss的公式 data loss+regularization!...2.1 反向传播推导 2.2 两层神经网络实现 计算前向传播 前向传播可以看上面手推图结构!

74040
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推荐系列(六):深层神经网络模型—— Softmax

    深度神经网络(DNN)模型可以解决矩阵分解的这些局限性。DNN可以轻松地合并查询特征和项目特征(由于网络输入层的灵活性),这有助于捕获用户的特定兴趣并提高建议的相关性。...Softmax DNN推荐 一种可能的DNN模型是softmax,它将问题看作多类预测问题,其中: 输入是用户查询。...图2.隐藏层的输出, ψ(X) Softmax输出:预测的概率分布 ? ? ? ? ? 图4.损失函数 ? ? ? ?...Softmax训练 上一节解释了如何将softmax层合并到推荐系统的深度神经网络中。本节将详细介绍此系统的训练数据。...矩阵分解 Softmax DNN 查询特征 不容易包括在内 可以包括在内 冷启动 不容易处理词典查询或项目。

    1.5K40

    稀疏Softmax(Sparse Softmax

    本文源自于SPACES:“抽取-生成”式长文本摘要(法研杯总结),原文其实是对一个比赛的总结,里面提到了很多Trick,其中有一个叫做稀疏Softmax(Sparse Softmax)的东西吸引了我的注意...,查阅了很多资料以后,汇总在此 Sparse Softmax的思想源于《From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label...里边作者提出了将Softmax稀疏化的做法来增强其解释性乃至提升效果 不够稀疏的Softmax 前面提到Sparse Softmax本质上是将Softmax的结果稀疏化,那么为什么稀疏化之后会有效呢?...我们认稀疏化可以避免Softmax过度学习的问题。...的内容,那么Sparse Softmax或者说Sparsemax是如何做到稀疏化分布的呢?

    1.8K31

    神经网络中的蒸馏技术,从Softmax开始说起

    Softmax告诉了我们什么? 当处理一个分类问题时,使用softmax作为神经网络的最后一个激活单元是非常典型的用法。这是为什么呢?...因为softmax函数接受一组logit为输入并输出离散类别上的概率分布。比如,手写数字识别中,神经网络可能有较高的置信度认为图像为1。不过,也有轻微的可能性认为图像为7。...一个迫在眉睫的问题可能会突然出现在我们的脑海中 —— 我们在神经网络中使用这些知识的最佳方式是什么?让我们在下一节中找出答案。...使用Softmax的信息来教学 —— 知识蒸馏 softmax信息比独热编码标签更有用。...这种想法也有可能扩展到神经网络。 知识蒸馏的高层机制 所以,这是一个高层次的方法: 训练一个在数据集上表现良好神经网络。这个网络就是“教师”模型。 使用教师模型在相同的数据集上训练一个学生模型。

    1.7K10

    Softmax

    Softmax函数概述 soft version of max 大的越来越大,小的越来越小 ?...Softmax常与crossentropy(交叉熵)搭配连用 上图中假设有三个输出,分别是2.0,1.0和0.1,如果将数值转换成概率的话,我们希望概率最大的值作为预测的label。...sigmoid函数可以将input压缩到[0,1]的范围,但是对于分类问题来说,我们不仅要求概率范围是[0,1],还要求所有的概率和为1,即$\sum p_i = 1$ 为了解决此类问题,就有了Softmax...函数,具体的函数表达式为 $$ S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} $$ 另外有一点要注意,Softmax具有差距放大功能,例如原来2.0和1.0是两倍关系,...经过Softmax压缩后,变为0.7和0.2,增大到3.5倍关系 Softmax求导 对Softmax函数进行求导,首先写出其函数表达式 $$ p_i = \frac{e^{a_i}}{\sum_{k

    56320

    SoftmaxSoftmax loss&Cross entropy

    然后如果你是多分类问题,一般会在全连接层后面接一个softmax层,这个softmax的输入是T*1的向量,输出也是T*1的向量(也就是图中的prob[T*1],这个向量的每个值表示这个样本属于每个类的概率...softmax的输出向量就是概率,该样本属于各个类的概率!...Softmax loss image.png 首先L是损失。Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。...entropy(交叉熵) image.png 当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。...Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是softmax loss。

    72130

    直观理解神经网络最后一层全连接+Softmax

    写在前面 这篇文章将从3个角度:加权、模版匹配与几何来理解最后一层全连接+Softmax。掌握了这3种视角,可以更好地理解深度学习中的正则项、参数可视化以及一些损失函数背后的设计思想。...全连接层与Softmax回顾 深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 ?...如果是只有一个全连接层的神经网络(相当于线性分类器),将每个类别的模板可以直接可视化如下,图片素材来自CS231n。 ?...如果是多层神经网络,最后一个全连接层的模板是特征空间的模板,可视化需要映射回输入空间。...Softmax的作用 image.png 总结 本文介绍了3种角度来更直观地理解全连接层+Softmax, 加权角度,将权重视为每维特征的重要程度,可以帮助理解L1、L2等正则项 模板匹配角度,可以帮助理解参数的可视化

    16.7K31

    Softmax简介

    Softmax是一种数学函数,通常用于将一组任意实数转换为表示概率分布的实数。...许多多层神经网络输出层的最后一层是一个全连接层,输出是一个实数向量,这个向量通常代表了每个类别的得分或置信度。为了将这些得分转换为概率分布,通常会使用softmax函数。...所以通常附加一个softmax函数在神经网络的最后一层之后。...Softmax函数的公式 softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量的一个元素: 下面是一个例子: 其中分子的函数可视化如下: Softmax的分子将指数函数应用于向量的每个元素...([5, 7, 10]) # apply softmax softmax = torch.exp(z) / torch.sum(torch.exp(z)) #tensor([0.0064,

    21110

    Softmax简介

    Softmax是一种数学函数,通常用于将一组任意实数转换为表示概率分布的实数。...许多多层神经网络输出层的最后一层是一个全连接层,输出是一个实数向量,这个向量通常代表了每个类别的得分或置信度。为了将这些得分转换为概率分布,通常会使用softmax函数。...所以通常附加一个softmax函数在神经网络的最后一层之后。...Softmax函数的公式 softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量的一个元素: 下面是一个例子: 其中分子的函数可视化如下: Softmax的分子将指数函数应用于向量的每个元素..., 0.9465]) 对于矩阵来说,也是一样的,我们下面先手动计算矩阵的softmax softmax = torch.exp(x) / torch.sum(torch.exp(x), axis=1

    4.1K50

    神经网络优化(损失函数:自定义损失函数、交叉熵、softmax())

    3、神经网络的层数,通常用神经网络的层数和神经网络待优化的参数的个数 来表示,层数 = 隐藏层的层数 + 1个输出层,总参数 = 总W + 总b4、神经网络的优化四个方面:损失函数loss、学习率learning_rate...()函数当n分类的n个输出(y1, y2, ..., yn)通过softmax()函数,便满足了y概率分布要求 (yn表示 第n中情况 出现的可能性大小。...这n个输出 经过softmax()函数后,会符合概率分布。)...(输出 经过softmax()函数 满足概率分布之后,再与标准答案 求交叉熵)# 输出 经过softmax()函数 满足概率分布之后,再与标准答案 求交叉熵ce = tf.nn.sparse_softmax_cross_entropy_with_logits...np.random.RandomState(SEED)X = rdm.rand(32, 2)Y = [[x1 + x2 + (rdm.rand()/10.0 - 0.05)] for (x1, x2) in X]# 1定义神经网络的输入

    1.9K20
    领券